
Integration Service Documentation
Release 3.1.0

eProsima

Jun 23, 2021

INTRODUCTION

1 System Handles 3

2 YAML configuration files 5

3 Main features 7

4 Typical use-cases 9

5 Structure of the documentation 11

6 Contact and commercial support 13
6.1 Integration Service Core . 14
6.2 System Handles . 14
6.3 YAML configuration files . 15
6.4 Main features . 15
6.5 Typical use-cases . 15
6.6 Structure of the documentation . 16
6.7 Contact and commercial support . 16
6.8 Dependencies . 16
6.9 Installation . 18
6.10 Integration Service Core . 22
6.11 System Handle . 24
6.12 YAML Configuration . 42
6.13 Integration Service Core . 50
6.14 Fast DDS System Handle . 85
6.15 ROS 1 System Handle . 92
6.16 ROS 2 System Handle . 99
6.17 WebSocket System Handle . 106
6.18 Different Protocols . 114
6.19 Same Protocol . 140
6.20 WAN Communication . 144
6.21 Latest version . 147
6.22 Previous versions . 147

Index 153

i

ii

Integration Service Documentation, Release 3.1.0

eProsima Integration Service is a tool that enables intercommunicating an arbitrary number of protocols that speak
different languages.

If one has a number of complex systems and wills to combine them to create a larger, even more complex system,
Integration Service can act as an intermediate message-passing tool that, by speaking a common language, centralizes
and mediates the integration.

The communication between the different protocols is made possible by system-specific plugins, or System Handles.
These provide the necessary conversion between the target protocols and the common representation language spoken
by Integration Service, based on an implementation of the xTypes specification. Once a system is communicated with
the core, it enters the Integration Service world and can straightforwardly reach out to any other system that already
exists in this world.

Integration Service is configured by means of a YAML text file, through which the user can provide a mapping between
the topics and services handled by the middlewares of the systems involved.

Integration Service comprises the following elements:

1. The Integration Service Core engine.

2. The System Handles or plugins, for each supported protocol.

3. A YAML Configuration file, which follows a specific syntax.

Integration Service provides a plugin-based platform that is easily and intuitively configurable. An Integration Ser-
vice instance can connect N middlewares through dedicated plugins that speak the same language as the core. This
common language is eProsima xTypes; a fast and lightweight OMG DDS-XTYPES standard C++17 header-only im-
plementation. Find more information on the core and on the xTypes representation language in the Integration Service

INTRODUCTION 1

http://www.eprosima.com/
https://www.omg.org/spec/DDS-XTypes/About-DDS-XTypes/
https://github.com/eProsima/xtypes
https://www.omg.org/spec/DDS-XTypes

Integration Service Documentation, Release 3.1.0

Core user manual of this documentation.

2 INTRODUCTION

CHAPTER

ONE

SYSTEM HANDLES

The plugins, or System Handles, are discovered by Integration Service at runtime after they have been installed.

Available System Handles up-to-date are listed below:

System Handle Repository
Fast DDS System Handle https://github.com/eProsima/FastDDS-SH
FIWARE System Handle https://github.com/eProsima/FIWARE-SH
ROS 1 System Handle https://github.com/eProsima/ROS1-SH
ROS 2 System Handle https://github.com/eProsima/ROS2-SH
WebSocket System Handle https://github.com/eProsima/WebSocket-SH

New System Handles for additional protocols can be easily created, automatically allowing communication of the new
protocol with the middlewares that are already supported.

The plugin-based framework is specially advantageous when it comes to integrating a new component into a complex
system where the rest of sub-systems use incompatible protocols. Indeed, once all protocols of interest are com-
municated with the core, each via a dedicated System Handle, the integration happens straightforwardly. The great
advantage of using Integration Service is that it relies on centralization rather than on the creation of dedicated bridges
for each pair of components. For a system made of N components, this means that the number of new software parts
to add grows as N rather than N2.

For further information, please refer to the System Handle specific user manual of the documentation.

3

https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/FIWARE-SH
https://github.com/eProsima/ROS1-SH
https://github.com/eProsima/ROS2-SH
https://github.com/eProsima/WebSocket-SH

Integration Service Documentation, Release 3.1.0

4 Chapter 1. System Handles

CHAPTER

TWO

YAML CONFIGURATION FILES

Integration Service is configured by means of a YAML file that specifies a set of compulsory fields, plus some optional
ones.

This configuration approach is especially profitable when it comes to integrating large systems, since a single YAML
file is needed no matter how many protocols are being communicated.

The strength of this approach is that different translations are possible by only changing the configuration file. This
means that no compilation steps are required between each Integration Service instantiation, as it is configured at
runtime.

Detailed information on how to configure an Integration Service-mediated communication via a YAML file can be
found in the YAML configuration user manual of this documentation.

5

Integration Service Documentation, Release 3.1.0

6 Chapter 2. YAML configuration files

CHAPTER

THREE

MAIN FEATURES

1. Free and Open Source: The Integration Service Core, and all System Handles available to date are free and
open source.

2. Easily configurable: As detailed above, an Integration Service instance is easily configurable by means of a
YAML file. For more information on how to do so, please consult the YAML Configuration user manual of this
documentation.

3. Easy to extend to new platforms: New platforms can easily enter the Integration Service world by generating
the plugin, or System Handle needed by the core to integrate them. For more information on System-Handles,
please consult the System Handle user manual of this documentation.

4. Easy to use: Installing and running Integration Service is intuitive and straightforward. Please refer to the
installation manual to be guided through the installation process.

7

https://github.com/eProsima/Integration-Service

Integration Service Documentation, Release 3.1.0

8 Chapter 3. Main features

CHAPTER

FOUR

TYPICAL USE-CASES

Integration Service comes in handy for a varied set of application scenarios, such as:

• Communication among systems using different protocols which handle incompatible types, topics, and ser-
vices. A complete list of the available examples described for this use-case scenario can be found here.

• Integration of systems under the same protocol which are isolated per specific protocol features. A complete
list of the available examples described for this use-case scenario can be found here.

• Communication through the Internet between systems hosted by logically separated WANs located in differ-
ent geographical regions. A complete list of the available examples described for this use-case scenario can be
found here.

9

Integration Service Documentation, Release 3.1.0

10 Chapter 4. Typical use-cases

CHAPTER

FIVE

STRUCTURE OF THE DOCUMENTATION

This documentation is organized into the sections listed below:

• Installation Manual

• User Manual

• API Reference

• Examples

• Release Notes

11

Integration Service Documentation, Release 3.1.0

12 Chapter 5. Structure of the documentation

CHAPTER

SIX

CONTACT AND COMMERCIAL SUPPORT

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

eProsima Integration Service is a tool that enables intercommunicating an arbitrary number of protocols that speak
different languages.

If one has a number of complex systems and wills to combine them to create a larger, even more complex system,
Integration Service can act as an intermediate message-passing tool that, by speaking a common language, centralizes
and mediates the integration.

The communication between the different protocols is made possible by system-specific plugins, or System Handles.
These provide the necessary conversion between the target protocols and the common representation language spoken
by Integration Service, based on an implementation of the xTypes specification. Once a system is communicated with
the core, it enters the Integration Service world and can straightforwardly reach out to any other system that already
exists in this world.

Integration Service is configured by means of a YAML text file, through which the user can provide a mapping between
the topics and services handled by the middlewares of the systems involved.

13

https://eprosima.com/
mailto:support@eprosima.com
http://www.eprosima.com/
https://www.omg.org/spec/DDS-XTypes/About-DDS-XTypes/

Integration Service Documentation, Release 3.1.0

Integration Service comprises the following elements:

1. The Integration Service Core engine.

2. The System Handles or plugins, for each supported protocol.

3. A YAML Configuration file, which follows a specific syntax.

6.1 Integration Service Core

Integration Service provides a plugin-based platform that is easily and intuitively configurable. An Integration Ser-
vice instance can connect N middlewares through dedicated plugins that speak the same language as the core. This
common language is eProsima xTypes; a fast and lightweight OMG DDS-XTYPES standard C++17 header-only im-
plementation. Find more information on the core and on the xTypes representation language in the Integration Service
Core user manual of this documentation.

6.2 System Handles

The plugins, or System Handles, are discovered by Integration Service at runtime after they have been installed.

Available System Handles up-to-date are listed below:

System Handle Repository
Fast DDS System Handle https://github.com/eProsima/FastDDS-SH
FIWARE System Handle https://github.com/eProsima/FIWARE-SH
ROS 1 System Handle https://github.com/eProsima/ROS1-SH
ROS 2 System Handle https://github.com/eProsima/ROS2-SH
WebSocket System Handle https://github.com/eProsima/WebSocket-SH

14 Chapter 6. Contact and commercial support

https://github.com/eProsima/xtypes
https://www.omg.org/spec/DDS-XTypes
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/FIWARE-SH
https://github.com/eProsima/ROS1-SH
https://github.com/eProsima/ROS2-SH
https://github.com/eProsima/WebSocket-SH

Integration Service Documentation, Release 3.1.0

New System Handles for additional protocols can be easily created, automatically allowing communication of the new
protocol with the middlewares that are already supported.

The plugin-based framework is specially advantageous when it comes to integrating a new component into a complex
system where the rest of sub-systems use incompatible protocols. Indeed, once all protocols of interest are com-
municated with the core, each via a dedicated System Handle, the integration happens straightforwardly. The great
advantage of using Integration Service is that it relies on centralization rather than on the creation of dedicated bridges
for each pair of components. For a system made of N components, this means that the number of new software parts
to add grows as N rather than N2.

For further information, please refer to the System Handle specific user manual of the documentation.

6.3 YAML configuration files

Integration Service is configured by means of a YAML file that specifies a set of compulsory fields, plus some optional
ones.

This configuration approach is especially profitable when it comes to integrating large systems, since a single YAML
file is needed no matter how many protocols are being communicated.

The strength of this approach is that different translations are possible by only changing the configuration file. This
means that no compilation steps are required between each Integration Service instantiation, as it is configured at
runtime.

Detailed information on how to configure an Integration Service-mediated communication via a YAML file can be
found in the YAML configuration user manual of this documentation.

6.4 Main features

1. Free and Open Source: The Integration Service Core, and all System Handles available to date are free and
open source.

2. Easily configurable: As detailed above, an Integration Service instance is easily configurable by means of a
YAML file. For more information on how to do so, please consult the YAML Configuration user manual of this
documentation.

3. Easy to extend to new platforms: New platforms can easily enter the Integration Service world by generating
the plugin, or System Handle needed by the core to integrate them. For more information on System-Handles,
please consult the System Handle user manual of this documentation.

4. Easy to use: Installing and running Integration Service is intuitive and straightforward. Please refer to the
installation manual to be guided through the installation process.

6.5 Typical use-cases

Integration Service comes in handy for a varied set of application scenarios, such as:

• Communication among systems using different protocols which handle incompatible types, topics, and ser-
vices. A complete list of the available examples described for this use-case scenario can be found here.

• Integration of systems under the same protocol which are isolated per specific protocol features. A complete
list of the available examples described for this use-case scenario can be found here.

6.3. YAML configuration files 15

https://github.com/eProsima/Integration-Service

Integration Service Documentation, Release 3.1.0

• Communication through the Internet between systems hosted by logically separated WANs located in differ-
ent geographical regions. A complete list of the available examples described for this use-case scenario can be
found here.

6.6 Structure of the documentation

This documentation is organized into the sections listed below:

• Installation Manual

• User Manual

• API Reference

• Examples

• Release Notes

6.7 Contact and commercial support

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

6.8 Dependencies

On this page, we provide a list of the dependencies required for an Integration Service instance to function. To do so,
we distinguish between those requirements that are common to all the repositories, the ones regarding the Integration
Service Core and those of each System Handle.

Depen-
dency

Description Installation

CMake At least version 3.5 is required to build the project files. apt install cmake
C++ eProsima Integration-Service uses standard C++14. apt install

build-essential
colcon Command line tool to build and test multiple software

packages.
Colcon installation guide

16 Chapter 6. Contact and commercial support

https://eprosima.com/
mailto:support@eprosima.com
https://cmake.org/
https://isocpp.org/
https://colcon.readthedocs.io/en/released/user/installation.html
https://colcon.readthedocs.io/en/released/user/installation.html

Integration Service Documentation, Release 3.1.0

6.8.1 Core

The Integration Service Core has the following requirements:

Dependency Description Installation
YAML-cpp YAML parser and emitter in C++. apt install libyaml-cpp-dev
Boost program
options

Allows obtaining name-value pairs from
the config file.

apt install
libboost-program-options-dev

Note: eProsima xTypes is an additional dependency but it is not necessary to install it, since if the Integration Service
Core repository is cloned using the --recursive option, it is downloaded automatically.

6.8.2 System Handles

Beyond the dependencies of the core, each System Handle has its own specific dependencies.

The Fast DDS System Handle has the following requirements:

Dependency Description Installation
Fast DDS (v2.0.0 or supe-
rior)

eProsima C++ implementation for
DDS.

Binaries installation guide Sources installation
guide

The FIWARE System Handle has the following requirements:

Dependency Description Installation
Asio C++ Li-
brary

C++ library for network and low-level I/O program-
ming.

apt install libasio-dev

cURLpp
library

C++ wrapper for libcURL. apt install libcurlpp-dev

cURL library Command-line tool for getting or sending data using
URL syntax.

apt install
libcurl4-openssl-dev

The ROS 1 System Handle has the following requirements:

Dependency Description Installation
ROS 1 Melodic/Noetic ROS 1 distribution. Melodic installation guide Noetic installation guide

The ROS 2 System Handle has the following requirements:

Dependency Description Installation
ROS 2 Foxy/Galactic ROS 2 distribution. Foxy installation guide Galactic installation guide

The WebSocket System Handle has the following requirements:

Dependency Description Installation
OpenSSL Toolkit for TLS and SSL protocols. apt install libssl-dev
WebSocket++ WebSocket Protocol C++ library implementation. apt install

libwebsocketpp-dev

6.8. Dependencies 17

https://github.com/jbeder/yaml-cpp
https://github.com/boostorg/program_options
https://github.com/boostorg/program_options
https://github.com/eProsima/xtypes
https://github.com/eProsima/Integration-Service
https://github.com/eProsima/Integration-Service
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/Fast-DDS
https://fast-dds.docs.eprosima.com/en/latest/installation/binaries/binaries_linux.html
https://fast-dds.docs.eprosima.com/en/latest/installation/sources/sources_linux.html
https://fast-dds.docs.eprosima.com/en/latest/installation/sources/sources_linux.html
https://think-async.com/Asio/
https://think-async.com/Asio/
http://www.curlpp.org/
http://www.curlpp.org/
https://curl.se/
http://wiki.ros.org/Distributions
http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/noetic/Installation
https://docs.ros.org/en/foxy/Releases.html#list-of-distributions
https://docs.ros.org/en/foxy/Installation.html
https://docs.ros.org/en/galactic/Installation.html
https://www.openssl.org/
https://github.com/zaphoyd/websocketpp

Integration Service Documentation, Release 3.1.0

6.9 Installation

This section provides the user with an easy-to-follow installation guide of both the Integration Service and of the
System Handles, and an explanation of how to launch and deploy an Integration Service project.

Important: Before following the installation steps, check that you have all the necessary dependencies installed.

6.9.1 Workspace Setup

This section explains step by step the workspace configuration required to use Integration Service. It is divided into
two subsections, which describe the configuration of the Integration Service Core and the System Handles respectively.

Core

The Integration Service core consist of many CMake packages which can be configured and built manually, but we
recommend to use colcon, as it makes the job much smoother.

The starting point is to create a colcon workspace and clone the Integration-Service repository, containing the core. To
do so, follow the next instructions:

mkdir ~/is-workspace
cd ~/is-workspace
git clone https://github.com/eProsima/Integration-Service.git src/Integration-Service
→˓--recursive

At this point, you have the Integration Service library correctly cloned into your is-workspace/src/
Integration-Service folder.

Note: The --recursive flag is needed to correctly initialize the xTypes library as a submodule.

System Handles

As discussed in the Introduction section, Integration Service allows to bring an arbitrary number of middlewares into
communication, each integrated into the core with a dedicated System Handle.

The workflow is thus dependent on the middlewares involved in the desired communication. The up-to-date list of the
available System Handles and the repositories hosting them is provided in the Built-in System Handles section.

Depending on the use-case, you might need to have either one, two, or more System Handles installed. In the examples
section, you can find a collection of relevant examples clarifying how to use these plugins according to your needs.

You will have to clone the repositories of the desired System Handles into the previously created is-workspace:

cd ~/is-workspace
git clone https://github.com/eProsima/<middleware_1-SH>.git src/middleware_1-SH
...
git clone https://github.com/eProsima/<middleware_N_SH>.git src/middleware_2-SH

Where <middleware_i-SH>, with i = 1, .., N refers to the i-th System Handle needed for carrying out the integra-
tion, chosen among the ones listed in the Built-in System Handles section. Each such System Handle will be cloned in
a dedicated src/middleware_i-SH folder inside your is-workspace.

18 Chapter 6. Contact and commercial support

https://colcon.readthedocs.io/en/released/index.html
https://github.com/eProsima/Integration-Service

Integration Service Documentation, Release 3.1.0

Note: If using a custom System Handle which is not present in the eProsima GitHub organization, clone the dedicated
repository into the is-workspace.

6.9.2 Build

Once all the necessary packages have been cloned, they need to be built. To do so, execute from the is-workspace:

colcon build <COMPILATION_FLAGS>

Note: <COMPILATION_FLAGS> refers to the optional flags used to configure Integration Service. For further
details refers to the Global compilation flags section.

Once that’s finished building and before launching your Integration Service project, you need to source the new colcon
overlay:

source install/setup.bash

Warning: If the ROS 1 and ROS 2 System Handles coexist in your Integration Service workspace, please notice
that the building process must be split into two steps, due to incompatibility between ROS distros:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
colcon build --packages-skip-regex is-ros1 <COMPILATION_FLAGS>
source /opt/ros/$<ROS1_DISTRO>/setup.bash
colcon build <COMPILATION_FLAGS>

Global compilation flags

Integration Service uses CMake for building and packaging the project. There are several CMake flags, which can be
tuned during the configuration step:

• BUILD_LIBRARY: This compilation flag can be used to completely disable the compilation of the Integration
Service set of libraries, that is, the Integration Service Core and all the existing System Handles existing in the
colcon workspace. It is enabled by default.

This flag is useful, for example, to speed up the documentation generation process, when building the
api_reference from the Doxygen source code comments.

~/is_ws$ colcon build --cmake-args -DBUILD_LIBRARY=OFF

• BUILD_API_REFERENCE: It is used to generate all the necessary files for building the api_reference section of
this documentation, starting from the source code comments written using a Doxygen-like format. It is disabled
by default; to use it:

~/is_ws$ colcon build --cmake-args -DBUILD_API_REFERENCE=ON

• BUILD_TESTS: When compiling Integration Service, use the -DBUILD_TESTS=ON CMake option to com-
pile both the unitary tests for the Integration Service Core and the unitary and integration tests for all the System
Handles present in the colcon workspace:

6.9. Installation 19

Integration Service Documentation, Release 3.1.0

~/is_ws$ colcon build --cmake-args -DBUILD_TESTS=ON

• BUILD_EXAMPLES: Allows to compile all the utilities that can be used for the several provided usage examples
for Integration Service, located under the examples/utils folder of the core repository. These applications can
be used to test the Integration Service with some of the provided YAML configuration files, which are located
under the examples/basic directory of the core repository:

~/is_ws$ colcon build --cmake-args -DBUILD_EXAMPLES=ON

Note: To use this flag, all the examples dependencies need to be installed.

• BUILD_FASTDDS_EXAMPLES: Allows to compile the Fast DDS utilities that can be used for several of the
provided usage examples for Integration Service, located under the examples/utils/dds folder. These applications
can be used to test the Integration Service with some of the provided YAML configuration files, which are located
under the examples/basic directory of the core repository:

~/is_ws$ colcon build --cmake-args -DBUILD_FASTDDS_EXAMPLES=ON

Note: To compile these examples you need to have Fast DDS (v.2.0.0 or superior) and its dependencies
installed.

To date, the following Fast DDS user application examples and utility packages are available:

– DDSHelloWorld: A simple publisher/subscriber C++ application, running under Fast DDS. It publishes
or subscribes to a simple string topic, named HelloWorldTopic.

The resulting executable will be located inside the build/is-examples/dds folder, and named
DDSHelloWorld. Please execute DDSHelloWorld -h to see a full list of supported input param-
eters.

– DDSAddTwoInts: A simple server/client C++ application, running under Fast DDS. It allows performing
service requests and replies to a service named AddTwoIntsService, which consists of two integer numbers
as request type and answers with a single value, indicating the sum of them.

The resulting executable will be located inside the build/is-examples/dds folder, and named
DDSAddTwoInts. Please execute DDSAddTwoInts -h to see a full list of supported input param-
eters.

• BUILD_ROS1_EXAMPLES: Allows to compile the ROS 1 utilities that can be used for several of the provided
usage examples for Integration Service, located under the examples/utils/ros1 folder. These applications can be
used to test the Integration Service with some of the provided YAML configuration files, which are located under
the examples/basic directory of the core repository:

~/is_ws$ colcon build --cmake-args -DBUILD_ROS1_EXAMPLES=ON

Note: In order to compile this example you need to have ROS 1 (Melodic or superior) installed and sourced,
and the Integration Service example_interfaces ROS 1 package compiled.

To date, the following ROS 1 user application examples and utility packages are available:

– add_two_ints_server: A simple C++ server application, running under ROS 1. It listens to requests
coming from ROS 1 clients and produces an appropriate answer for them; specifically, it is capable of

20 Chapter 6. Contact and commercial support

https://github.com/eProsima/Integration-Service/tree/main/examples/utils
https://github.com/eProsima/Integration-Service/tree/main/examples/basic
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds
https://github.com/eProsima/Integration-Service/tree/main/examples/basic
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/ros1
https://github.com/eProsima/Integration-Service/tree/main/examples/basic

Integration Service Documentation, Release 3.1.0

listening to a ROS 1 service called add_two_ints, which consists of two integer numbers as request
type and answers with a single value, indicating the sum of them.

The resulting executable will be located inside the build/devel/lib/add_two_ints_server
folder, and named add_two_ints_server_node.

– example_interfaces: ROS 1 package containing the service type definitions for the AddTwoInts
services examples, for which the ROS 1 type support files will be automatically generated. As specified in
the services examples tutorials, it must be compiled and installed in the system, using catkin:

~/is_ws$ cd examples/utils/ros1/catkin_ws/
~/is_ws/examples/utils/ros1/catkin_ws$ catkin_make -DBUILD_EXAMPLES=ON -
→˓DCMAKE_INSTALL_PREFIX=/opt/ros/$<ROS1_DISTRO> install

• BUILD_WEBSOCKET_EXAMPLES: Allows to compile the WebSocket utilities that can be used for several of
the provided usage examples for Integration Service, located under the examples/utils/websocket folder. These
applications can be used to test the Integration Service with some of the provided YAML configuration files,
which are located under the examples/basic directory of the core repository:

~/is_ws$ colcon build --cmake-args -DBUILD_WEBSOCKET_EXAMPLES=ON

Note: In order to compile this example you need to have OpenSSL and WebSocket++ installed.

To date, the following WebSocket user application examples and utility packages are available:

– WebSocketAddTwoInts: A simple server/client C++ application, running under WebSocket++. It
allows performing service requests and replies to a service named add_two_ints, which consists of two
integer numbers as request type and answers with a single value, indicating the sum of them.

The resulting executable will be located inside the build/is-examples/websocket folder, and
named DDSAddTwoInts. Please execute WebSocketAddTwoInts -h to see a full list of supported
input parameters.

6.9.3 Deployment

The is-workspace is now prepared for running an Integration Service instance.

The communication can be configured using a YAML file as explained in section YAML Configuration. Once created,
it is passed to Integration Service with the following instruction:

integration-service <config.yaml>

As soon as Integration Service is initiated, the desired protocols can be communicated by launching them in indepen-
dent terminal windows. To get a better taste of how to do so, refer to the examples section, which provides several
examples of how to connect instances of systems that are already integrated into the Integration Service ecosystem.

Note: The sourcing of the local colcon overlay is required every time the colcon workspace is opened in a new shell
environment. As an alternative, you can copy the source command with the full path of your local installation to your
.bashrc file as:

source /PATH-TO-YOUR-IS-WORKSPACE/is-workspace/install/setup.bash

6.9. Installation 21

https://github.com/eProsima/Integration-Service/tree/main/examples/utils/websocket
https://github.com/eProsima/Integration-Service/tree/main/examples/basic

Integration Service Documentation, Release 3.1.0

6.10 Integration Service Core

The is-core library defines a set of abstract interfaces and provides some utility classes that form a plugin-based
framework.

A single integration-service executable instance can connect N middlewares, where each middleware has a
plugin, or System Handle associated with it.

The System Handle for a middleware is a lightweight wrapper around that middleware (e.g. a ROS node or a WebSocket
server/client). The is-core library provides CMake functions that allow these middleware System Handles to be
discovered by the integration-service executable at runtime after the System Handle has been installed.

A single integration-service instance can route any number of topics or services to/from any number of
middlewares. Because of this, downstream users can extend Integration Service to communicate with any middleware.

According to the diagram depicted above, the Integration Service Core executes the following steps:

1. Parse the YAML configuration file. This file must contain everything needed to successfully launch an Integra-
tion Service instance. To get a detailed view on how to write a configuration file for the Integration Service,
please refer to the YAML Configuration section of this documentation.

2. If the configuration parsing process ended successfully, IDL types are parsed and registered within the Inte-
gration Service Core type registry database. This will allow to later define the required topics and services types
that will take part in the intercommunication process.

The IDL parsing procedure is fulfilled thanks to the built-in parser provided with the xTypes library. More
information about how this library works and why it is extremely useful for Integration Service can be found in
the section below.

3. According to the specified systems, the corresponding System Handles dynamic libraries are loaded.

Please take into account that each system type must match on of those supported by Integration Service. A table
with every built-in provided System Handle and their corresponding source code GitHub repositories can be

22 Chapter 6. Contact and commercial support

https://github.com/eProsima/xTypes.git

Integration Service Documentation, Release 3.1.0

found here.

If a user wants to incorporate a new protocol into the Integration Service ecosystem to use it in his or her
Integration Service application instance, the specific System Handle must be implemented first. Please refer to
the System Handle implementation section of the documentation.

4. Next, the routes are processed, and links between the routed systems are established.

For example, if a route consists on establishing a link from Middleware_1 to Middleware_2, the Integration
Service Core will internally register:

• A Middleware_1 TopicSubscriber.

• A Middleware_2 TopicPublisher.

The Middleware_1 TopicSubscriber will be listening to a certain Middleware_1 topic publisher. This subscriber
registers a callback that internally converts the middleware-specific data type instance into a Dynamic Data,
using xTypes for that purpose, and forwards the converted data instance to the Middleware_2 TopicPublisher,
which will then publish it so that it can be consumed by the final endpoint destination, that is, a Middleware_2
subscriber.

5. For the defined topics and services, the topic/service name are registered within the Integration Service Core,
prior to check that the specified type exists and has been previously registered within the type registry. Each
topic/service must use one of the provided routes in the configuration file.

If all these steps are correctly fulfilled, an Integration Service instance is launched and starts listening for incoming
messages to translate them into the specified protocols. The green arrow on the diagram depicts this behavior. Notice
that xTypes is the common language representation used for transmitting the data among System Handles, so we will
introduce this library right away.

6.10.1 The xTypes library

eProsima xTypes is a fast and lightweight C++17 header-only implementation of the OMG DDS-xTypes standard.

This library allows to create Dynamic Type representations at runtime, by means of feeding the provided parser with
an IDL type definition. For example, given the following IDL:

struct Inner {
long a;

};

struct Outer {
long b;
Inner c;

};

xTypes provides with an easy and intuitive API to retrieve the structured dynamic type:

xtypes::idl::Context context = idl::parse(my_idl);
const xtypes::StructType& inner = context.module().structure("Inner");
const xtypes::StructType& outer = context.module().structure("Outer");

The Integration Service Core uses xTypes as the common representation language for transmitting information be-
tween each System Handle instance that is desired to establish a communication between. To do so, System Handles
must provide a way to convert their specific data types instances into/from xTypes. An example on how this procedure
would look like for a System Handle, that is, the FastDDS System Handle, can be found here.

6.10. Integration Service Core 23

https://github.com/eProsima/xtypes
https://www.omg.org/spec/DDS-XTypes
https://www.omg.org/spec/IDL/4.2/About-IDL/
https://github.com/eProsima/FastDDS-SH/blob/main/src/Conversion.cpp

Integration Service Documentation, Release 3.1.0

6.10.2 API Reference

The Integration Service API Reference constitutes an independent section within this documentation. To access the
Integration Service Core subsection, use this link.

6.11 System Handle

As explained in the Introduction, a single integration-service instance can route any number of topics or
services to/from any number of middlewares.

This occurs through the use of System Handles, which are system-specific plugins that allows a certain middleware or
communication protocol to speak the same language used by the Integration Service, that is, Extensible and Dynamic
Topic Types for DDS (xTypes).

6.11.1 Built-in System Handles

This section provides an insight over the existing built-in System Handles provided along with Integration Service for
connecting the core with the following middlewares or communication protocols:

Fast DDS System Handle

The Fast DDS System Handle can be used for three main purposes:

• Connection between a DDS application and an application running over a different middleware implementation.
This is the classic use-case for Integration Service.

• Connecting two DDS applications running under different Domain IDs.

• Creating a TCP tunnel, by running an Integration Service instance on each of the machines you want to establish
a communication between.

24 Chapter 6. Contact and commercial support

https://github.com/eProsima/xtypes

Integration Service Documentation, Release 3.1.0

Dependencies

The only dependency of this System Handle is to have a Fast DDS installation (v2.0.0 or superior) in your system.

Note: The Fast DDS System Handle requires an installation of Fast DDS to work. The System Handle first looks into
the system for a previous installation of Fast DDS v2.0.0 or superior. If it doesn’t find one, it downloads and installs
its own version.

Configuration

Regarding the Fast DDS System Handle, there are several specific parameters which can be configured for the DDS
middleware. All of these parameters are optional, and are suboptions of the main five sections:

• systems: The system type must be fastdds. In addition to the type and types-from fields, the Fast
DDS System Handle accepts the following specific configuration fields:

systems:
dds:
type: fastdds
participant:

domain_id: 3
file_path: <path_to_xml_profiles_file>.xml
profile_name: fastdds-sh-participant-profile

– participant: Allows to add a specific configuration for the Fast DDS DomainParticipant:

* domain_id: Provides an easy way to change the Domain ID of the DDS entities created by the Fast
DDS System Handle.

* file_path: Path to an XML file, containing a configuration profile for the System Handle partici-
pant. More information about Fast DDS XML profiles and how to fully customize the properties of
DDS entities through them is available here.

* profile_name: Within the provided XML file, the name of the XML profile associated to the
Integration Service Fast DDS System Handle participant.

Examples

There are several examples that you can find in this documentation in which the Fast DDS System Handle is employed
in the communication process. Some of them are presented here:

• DDS - ROS 2 bridge

• DDS Service Server

• DDS Domain ID change

• WAN-TCP tunneling over DDS

6.11. System Handle 25

https://fast-dds.docs.eprosima.com/en/latest/installation/binaries/binaries_linux.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/domain/domainParticipant/domainParticipant.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/xml_configuration/xml_configuration.html

Integration Service Documentation, Release 3.1.0

Compilation flags

Besides the Global compilation flags available for the whole Integration Service product suite, there are some specific
flags which apply only to the Fast DDS System Handle. They are listed below:

• BUILD_FASTDDS_TESTS: Allows to specifically compile the Fast DDS System Handle unitary and inte-
gration tests. It is useful to avoid compiling each System Handle’section test suite present in the colcon
workspace, which is what would happen if using the BUILD_TESTS flag, with the objective of minimiz-
ing building time. To use it, after making sure that the Fast DDS System Handle is present in your colcon
workspace, execute the following command:

~/is_ws$ colcon build --cmake-args -DBUILD_FASTDDS_TESTS=ON

API Reference

The Integration Service API Reference constitutes an independent section within this documentation. To access the
Fast DDS System Handle subsection, use this link.

FIWARE System Handle

This repository contains the source code of the Integration Service System Handle for the FIWARE middleware pro-
tocol, widely used in the robotics field.

The main purpose of the FIWARE System Handle is that of establishing a connection between a FIWARE’s Con-
text Broker and an application running over a different middleware implementation. This is the classic use-case for
Integration Service.

Dependencies

The dependencies of the FIWARE System Handle are:

• Asio C++ Library

• cURLpp library

• cURL library

Configuration

Regarding the FIWARE System Handle, there are several specific parameters which must be configured for the FIWARE
middleware. These parameters are mandatory, and are suboptions of the main five sections:

• systems: The system typemust be fiware. In addition to the type and types-from fields, the FIWARE
System Handle accepts some specific configuration fields:

systems:
fiware:

type: fiware
host: localhost
port: 1026

• port: The specific port where the FIWARE’s Context Broker will listen for incoming connections. This field is
required.

26 Chapter 6. Contact and commercial support

https://www.fiware.org/
https://think-async.com/Asio/
http://www.curlpp.org/
https://curl.se/

Integration Service Documentation, Release 3.1.0

• host: The IP address of the FIWARE’s Context Broker. This field is required.

Examples

There is one example that you can find in this documentation in which the FIWARE System Handle is employed in the
communication process:

• FIWARE - ROS 2 bridge

Compilation flags

Besides the Global compilation flags available for the whole Integration Service product suite, there are some specific
flags which apply only to the FIWARE System Handle. They are listed below:

• BUILD_FIWARE_TESTS: Allows to specifically compile the FIWARE System Handle unitary and integration
tests. It is useful to avoid compiling each System Handle’section test suite present in the colcon workspace,
which is what would happen if using the BUILD_TESTS flag, with the objective of minimizing building time.
To use it, after making sure that the FIWARE System Handle is present in your colcon workspace, execute the
following command:

~/is_ws$ colcon build --cmake-args -DBUILD_FIWARE_TESTS=ON

ROS 1 System Handle

The main purpose of the ROS 1 System Handle is that of establishing a connection between a ROS 1 application and an
application running over a different middleware implementation. This is the classic use-case for Integration Service.

Dependencies

The only dependency of this System Handle is to have a ROS 1 installation (Melodic or Noetic) in your system.

Configuration

Regarding the ROS 1 System Handle, there are several specific parameters which can be configured for the ROS 1
middleware. All of these parameters are optional, and are suboptions of the main five sections:

• systems: The system type must be ros1. In addition to the type and types-from fields, the ROS 1
System Handle accepts the following specific configuration fields:

systems:
ros1:

type: ros1
node_name: "my_ros1_node"

– node_name: The ROS 1 System Handle node name.

• topics: The topic route must contain ros1 within its from or to fields. Additionally, the ROS 1 System
Handle accepts the following topic specific configuration parameters, within the ros1 specific middleware
configuration tag:

6.11. System Handle 27

http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/noetic/Installation

Integration Service Documentation, Release 3.1.0

routes:
ros2_to_ros1: { from: ros2, to: ros1 }
ros1_to_dds: { from: ros1, to: dds }

topics:
hello_ros1:

type: std_msgs/String
route: ros2_to_ros1
ros1: { queue_size: 10, latch: false }

hello_dds:
type: std_msgs/String
route: ros1_to_dds
ros1: { queue_size: 5 }

– queue_size: The maximum message queue size for the ROS 1 publisher or subscription.

– latch: Enable or disable latching. When a connection is latched, the last message published is saved
and sent to any future subscribers that connect. This configuration parameter only makes sense for ROS 1
publishers, so it is only useful for routes where the ROS 1 System Handle acts as a publisher, that is, for
routes where ros1 is included in the to list.

Examples

There are several examples that you can find in this documentation in which the ROS 1 System Handle is employed in
the communication process. Some of them are presented here:

• ROS 1 - ROS 2 bridge

• ROS 1 Service Server

Compilation flags

Besides the Global compilation flags available for the whole Integration Service product suite, there are some specific
flags which apply only to the ROS 1 System Handle; they are listed below:

• BUILD_ROS1_TESTS: Allows to specifically compile the ROS 1 System Handle unitary and integration tests.
It is useful to avoid compiling each System Handle’section test suite present in the colcon workspace, which
is what would happen if using the BUILD_TESTS flag, with the objective of minimizing building time. To use
it, after making sure that the ROS 1 System Handle is present in your colcon workspace, execute the following
command:

~/is_ws$ colcon build --cmake-args -DBUILD_ROS1_TESTS=ON

• MIX_ROS_PACKAGES: It accepts as an argument a list of ROS packages, such as std_msgs,
geometry_msgs, sensor_msgs, nav_msgs. . . for which the required transformation library to convert
the specific ROS 1 type definitions into xTypes, and the other way around, will be built. This list is shared with
the ROS 2 System Handle, meaning that the ROS packages specified in the MIX_ROS_PACKAGES variable will
also be built for ROS 2 if the corresponding System Handle is present within the Integration Service workspace.
To avoid possible errors, if a certain package is only present in ROS 1, the MIX_ROS1_PACKAGES flag must be
used instead.

These transformation libraries are also known within the Integration Service context as Middleware
Interface Extension or mix libraries.

28 Chapter 6. Contact and commercial support

https://index.ros.org/packages/
https://github.com/eProsima/ROS2-SH#compilation-flags

Integration Service Documentation, Release 3.1.0

By default, only the std_msgs_mix library is compiled, unless the BUILD_TESTS or
BUILD_ROS1_TESTS is used, case in which some additional ROS 1 packages mix files required for
testing will be built.

If the user wants to compile some additional packages to use them with Integration Service, the following
command must be launched to compile it, adding as much packages to the list as desired:

~/is_ws$ colcon build --cmake-args -DMIX_ROS_PACKAGES="std_msgs geometry_msgs
→˓sensor_msgs nav_msgs"

• MIX_ROS1_PACKAGES: It is used just as the MIX_ROS_PACKAGES flag, but will only affect ROS 1; this
means that the mix generation engine will not search within the ROS 2 packages, allowing to compile specific
ROS 1 packages independently.

For example, if a user wants to compile a certain package dummy_msgs independently from ROS 1, but com-
piling std_msgs and geometry_msgs for both the ROS 1 and ROS 2 System Handles, the following command
should be executed:

~/is_ws$ colcon build --cmake-args -DMIX_ROS_PACKAGES="std_msgs geometry_msgs" -
→˓DMIX_ROS2_PACKAGES="dummy_msgs"

API Reference

The Integration Service API Reference constitutes an independent section within this documentation. To access the
ROS 1 System Handle subsection, use this link.

ROS 2 System Handle

The ROS 2 System Handle can be used for two main purposes:

• Connection between a ROS 2 application and an application running over a different middleware implementa-
tion. This is the classic use-case for Integration Service.

• Connecting two ROS 2 applications running under different Domain IDs.

Dependencies

The only dependency of this System Handle is to have a ROS 2 installation (Foxy or superior) in your system.

Configuration

Regarding the ROS 2 System Handle, there are several specific parameters which can be configured for the ROS 2
middleware. All of these parameters are optional, and are suboptions of the main five sections:

• systems: The system type must be ros2. In addition to the type and types-from fields, the ROS 2
System Handle accepts the following specific configuration fields:

systems:
ros2:

type: ros2
namespace: "/"
node_name: "my_ros2_node"
domain: 4

6.11. System Handle 29

https://docs.ros.org/en/foxy/Installation.html

Integration Service Documentation, Release 3.1.0

– namespace: The namespace of the ROS 2 node created by the ROS 2 System Handle.

– node_name: The ROS 2 System Handle node name.

– domain: Provides with an easy way to change the Domain ID of the ROS 2 entities created by the ROS 2
System Handle.

Examples

There are several examples that you can find in this documentation in which the ROS 2 System Handle is employed in
the communication process. Some of them are presented here:

• ROS 1 - ROS 2 bridge

• DDS - ROS 2 bridge

• ROS 2 - WebSocket bridge

• FIWARE - ROS 2 bridge

• ROS 2 Service Server

• ROS 2 Domain ID change

Compilation flags

Besides the Global compilation flags available for the whole Integration Service product suite, there are some specific
flags which apply only to the ROS 2 System Handle; they are listed below:

• BUILD_ROS2_TESTS: Allows to specifically compile the ROS 2 System Handle unitary and integration tests.
It is useful to avoid compiling each System Handle’section test suite present in the colcon workspace, which
is what would happen if using the BUILD_TESTS flag, with the objective of minimizing building time. To use
it, after making sure that the ROS 2 System Handle is present in your colcon workspace, execute the following
command:

~/is_ws$ colcon build --cmake-args -DBUILD_ROS2_TESTS=ON

• IS_ROS2_DISTRO: This flag is intended to select the ROS 2 distro that should be used to compile the ROS
2 System Handle. If not set, the version will be retrieved from the last ROS distro sourced in the compilation
environment; this means that if the last ROS environment sourced corresponds to ROS 1, the compilation process
will stop and warn the user about it.

• MIX_ROS_PACKAGES: It accepts as an argument a list of ROS packages, such as std_msgs,
geometry_msgs, sensor_msgs, nav_msgs. . . for which the required transformation library to convert
the specific ROS 2 type definitions into xTypes, and the other way around, will be built. This list is shared with
the ROS 1 System Handle, meaning that the ROS packages specified in the MIX_ROS_PACKAGES variable will
also be built for ROS 1 if the corresponding System Handle is present within the Integration Service workspace.
To avoid possible errors, if a certain package is only present in ROS 2, the MIX_ROS2_PACKAGES flag must be
used instead.

These transformation libraries are also known within the Integration Service context as Middleware
Interface Extension or mix libraries.

By default, only the std_msgs_mix library is compiled, unless the BUILD_TESTS or
BUILD_ROS2_TESTS is used, case in which some additional ROS 2 packages mix files required for
testing will be built.

If the user wants to compile some additional packages to use them with Integration Service, the following
command must be launched to compile it, adding as much packages to the list as desired:

30 Chapter 6. Contact and commercial support

https://index.ros.org/packages/
https://github.com/eProsima/ROS1-SH#compilation-flags

Integration Service Documentation, Release 3.1.0

~/is_ws$ colcon build --cmake-args -DMIX_ROS_PACKAGES="std_msgs geometry_msgs
→˓sensor_msgs nav_msgs"

• MIX_ROS2_PACKAGES: It is used just as the MIX_ROS_PACKAGES flag, but will only affect ROS 2; this
means that the mix generation engine will not search within the ROS 1 packages, allowing to compile specific
ROS 2 packages independently.

For example, if a user wants to compile a certain package dummy_msgs independently from ROS 2, but com-
piling std_msgs and geometry_msgs for both the ROS 1 and ROS 2 System Handles, the following command
should be executed:

~/is_ws$ colcon build --cmake-args -DMIX_ROS_PACKAGES="std_msgs geometry_msgs" -
→˓DMIX_ROS2_PACKAGES="dummy_msgs"

API Reference

The Integration Service API Reference constitutes an independent section within this documentation. To access the
ROS 2 System Handle subsection, use this link.

WebSocket System Handle

This repository contains the source code of Integration Service System Handle for the WebSocket middleware protocol,
widely used in the robotics field. The main purpose of the WebSocket System Handle is that of establishing a connection
between a WebSocket application and an application running over a different middleware implementation. This is the
classic use-case for Integration Service.

Dependencies

The dependencies of the WebSocket System Handle are:

• OpenSSL

• WebSocket++

Configuration

Regarding the WebSocket System Handle, there are several specific parameters which can be configured for the Web-
Socket middleware. All of these parameters are suboptions of the main five sections:

• systems: The system type must be websocket_server or websocket_client. In addition to the
type and types-from fields, the WebSocket System Handle accepts a wide variety of specific configuration
fields, depending on the selected operation mode (Client or Server).

For the websocket_server System Handle, there are two possible configuration scenarios: the former one
uses a TLS endpoint, and the latter uses a TCP endpoint.

TLS

systems:
websocket:
type: websocket_server
port: 80

(continues on next page)

6.11. System Handle 31

https://www.websocket.org/
https://www.openssl.org/
https://github.com/zaphoyd/websocketpp

Integration Service Documentation, Release 3.1.0

(continued from previous page)

cert: path/to/cert/file.crt
key: path/to/key/file.key
authentication:
policies: [

{ secret: this-is-a-secret, algo: HS256, rules: {example: "*regex*
→˓"} }

]

TCP

systems:
websocket:
type: websocket_server
port: 80
security: none
encoding: json

– port: The specific port where the server will listen for incoming connections. This field is required.

– security: If this field is not present, a secure TLS endpoint will be created. If the special value none
is written, a TCP WebSocket server will be set up.

– cert: The X.509 certificate that the server should use. This field is mandatory if security is enabled.

– key: A path to the file containing the public key used to verify credentials with the specified certificate. If
security is enabled, this field must exist and must be filled in properly.

– authentication: It is a list of policies. Each policy accepts the following keys: * secret: When
using MAC (Message Authentication Code) method for verification, this field allows to set the secret used
to authenticate the client requesting a connection to the server. * pubkey: Path to a file containing a PEM
encoded public key.

NOTE: Either a secret or a pubkey is required.

* rules: List of additional claims that should be checked. It should contain a map with keys cor-
responding to the claim identifier, and values corresponding to regex patterns that should match the
payload’s value. In the example above, the rule will check that the payload contains an example
claim and that its value contains the regex keyword in any position of the message. This field is
optional.

* algo: The algorithm that should be used for encrypting the connection token. If the incoming token
is not encrypted with the same algorithm, it will be discarded. If not specified, the HS256 algorithm
will be used.

– encoding: Specifies the protocol, built over JSON, that allows users to exchange useful information
between the client and the server, by means of specifying which keys are valid for the JSON sent/received
messages and how they should be formatted for the server to accept and process these messages. By
default, json encoding is provided in the WebSocket System Handle and used if not specified otherwise.
Users can implement their own encoding by implementing the Encoding class.

For the websocket_client System Handle, there are also two possible configuration scenarios: using
TLS or TCP.

TLS

systems:
websocket:
type: websocket_client
host: localhost

(continues on next page)

32 Chapter 6. Contact and commercial support

src/Encoding.hpp

Integration Service Documentation, Release 3.1.0

(continued from previous page)

port: 80
cert_authorities: [my_cert_authority.ca.crt]
authentication:

token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.ey...

TCP

systems:
websocket:
type: websocket_client
port: 80
security: none
encoding: json
authentication:

token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.ey...

* port: The specific port where the client will attempt to establish a connection to a WebSocket server.
This field is mandatory.

* host: Address where the WebSocket server is hosted. If not specified, it will use localhost as the
default value.

* security: If this field is not present, a secure TLS endpoint will be created. If the special value
none is written, a TCP WebSocket client will be set up.

* cert_authorities: List of certificate authorities used to validate the client against the server.
This field is optional and only applicable if security is not disabled.

* authentication: allows to specify the public token used to perform the secure authentication
process with the server. This field is mandatory.

* encoding: Specifies the protocol, built over JSON, that allows users to exchange useful informa-
tion between the client and the server, by means of specifying which keys are valid for the JSON
sent/received messages and how they should be formatted for the server to accept and process these
messages. By default, json encoding is provided in the WebSocket System Handle and used if not
specified otherwise. Users can implement their own encoding by implementing the Encoding class.

JSON encoding protocol

In order to communicate with the WebSocket System Handle using the JSON encoding, the messages should follow
a specific pattern. This pattern will be different depending on the paradigm used for the connection (pub/sub or
client/server) and the communication purpose.

Several fields can be used in those messages, but not all of them are mandatory. All of them will be described in this
section, as well as in which cases they are optional:

• op: The Operation Code is mandatory in every communication as it specifies the purpose of the message. This
field can assume nine different values, which are the ones detailed below.

– advertise: It notifies that there is a new publisher that is going to publish messages on a specific topic.
The fields that can be set for this operation are: topic, type and optionally the id.

{"op": "advertise", "topic": "helloworld", "type": "HelloWorld", "id": "1"}

– unadvertise: It states that a publisher is not going to publish any more messages on a specific topic.
The fields that can be set for this operation are: topic and optionally the id.

6.11. System Handle 33

src/Encoding.hpp

Integration Service Documentation, Release 3.1.0

{"op": "unadvertise", "topic": "helloworld", "id": "1"}

– publish: It identifies a message that wants to be published over a specific topic. The fields that can be
set for this operation are: topic and msg.

{"op": "publish", "topic": "helloworld", "msg": {"data": "Hello"}}

– subscribe: It notifies that a subscriber wants to receive the messages published under a specific topic.
The fields that can be set for this operation are: topic and optionally the id and type.

{"op": "subscribe", "topic": "helloworld", "type": "HelloWorld", "id": "1"}

– unsubscribe: It states that a subscriber doesn’t want to receive messages from a specific topic anymore.
The fields that can be set for this operation are: topic and optionally the id.

{"op": "unsubscribe", "topic": "helloworld", "id": "1"}

– call_service: It identifies a message request that wants to be published on a specific service. The
fields that can be set for this operation are: service, args and optionally the id.

{"op": "call_service", "service": "hello_serv", "args": {"req": "req"}, "id":
→˓"1"}

– advertise_service: It notifies that a new server is going to attend to the requests done on a specific
service. The fields that can be set for this operation are: request_type, reply_type and service.

{"op": "advertise_service", "service": "hello_serv", "request_type":
→˓"HelloRequest", "reply_type": "HelloReply"}

– unadvertise_service: It states that a server is not going to attend any more the requests done on a
specific service. The fields that can be set for this operation are: type and service.

{"op": "unadvertise_service", "service": "hello_serv", "type": "HelloReply"}

– service_response: It identifies a message reply that wants to be published as response to a specific
request. The fields that can be set for this operation are: service, values and optionally the id.

{"op": "service_response", "service": "hello_serv", "values": {"resp": "resp"}
→˓, "id": "1"}

• id: Code that identifies the message.

• topic: Name that identifies a specific topic.

• type: Name of the type that wants to be used for publishing messages on a specific topic.

• request_type: Name of the type that wants to be used for the service requests.

• reply_type: Name of the type that wants to be used for the service responses.

• msg: Message that is going to be published under a specific topic.

• service: Name that identifies a specific service.

• args: Message that is going to be published under a specific service as a request.

• values: Message that is going to be published under a specific service as a response.

• result: Value that states if the request has been successful.

34 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Examples

There are several examples that you can find in this documentation in which the WebSocket System Handle is employed
in the communication process. Some of them are presented here:

• ROS 2 - WebSocket bridge

• WebSocket Service Server

Compilation flags

Besides the Global compilation flags available for the whole Integration Service product suite, there are some specific
flags which apply only to the WebSocket System Handle; they are listed below:

• BUILD_WEBSOCKET_TESTS: Allows to specifically compile the WebSocket System Handle unitary and in-
tegration tests. It is useful to avoid compiling each System Handle’section test suite present in the colcon
workspace, which is what would happen if using the BUILD_TESTS flag, with the objective of minimizing
building time. To use it, after making sure that the WebSocket System Handle is present in your colcon
workspace, execute the following command:

~/is_ws$ colcon build --cmake-args -DBUILD_WEBSOCKET_TESTS=ON

API Reference

The Integration Service API Reference constitutes an independent section within this documentation. To access the
WebSocket System Handle subsection, use this link.

Protocol System Handle overview
Fast DDS Fast DDS System Handle
FIWARE FIWARE System Handle
ROS 1 ROS 1 System Handle
ROS 2 ROS 2 System Handle
WebSocket WebSocket System Handle

Additional System Handles can be implemented by users, in order to have the desired middlewares joining the Integra-
tion Service world. Adding a new System Handle automatically allows communication with the rest of the protocols
already available in this ecosystem.

6.11.2 Implementation

This section provides an overview of the architecture of a System Handle, by depicting the class inheritance structure
and specifying the methods which need to be implemented in order to create a custom System Handle.

Here you can find a diagram of a System Handle class inheritance structure.

6.11. System Handle 35

Integration Service Documentation, Release 3.1.0

Each System Handle must inherit, directly or indirectly, from the SystemHandle superclass. De-
pending on the nature of each protocol, it should implement the derived classes using multiple inher-
itance from TopicSubscriberSystem, TopicPublisherSystem, ServiceClientSystem, and/or
ServiceProviderSystem. To simplify this inheritance, classes TopicSystem, ServiceSystem, and
FullSystem are available to inherit from.

In the diagram below, the architecture of a generic “Full” System Handle and its integration into Integration Service is
shown.

36 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

To ease the implementation, the new system::SystemHandle will inherit from FullSystem. The following
sections will explain the methods to be implemented.

To implement the TopicPublisher, ServiceClient, and ServiceProvider interfaces, the most direct
way is to create child classes, respectively system::Publisher, system::Client, and system::Server.
An additional class system::Subscriber may be useful to manage the subscribers created. In the example
shown in the diagram above, the system::SystemHandle will contain the needed instances of these classes, but
any approach may be valid if the interfaces are met.

6.11. System Handle 37

Integration Service Documentation, Release 3.1.0

SystemHandle Class

All System Handles must implement the configure, okay, and spin_oncemethods that belong to the superclass:

bool configure(
const RequiredTypes& types,
const YAML::Node& configuration,
TypeRegistry& type_registry);

bool okay() const = 0;

bool spin_once();

The configure method is called to setup the System Handle with the associated configuration, defined in the
YAML file that is passed to it. The types that the SH needs to manage to implement the communication are passed to
this method via the types argument, whereas the new types created by the System Handle are expected to be filled
in the type_registry.

The okay method is called by Integration Service to check if the System Handle is working. This method will verify
internally if the middleware has any problem.

The spin_once method is called by Integration Service to allow spinning to those middlewares that need it.

TopicSubscriberSystem Class

This kind of system must implement the subscribe and the is_internal_message method:

using SubscriptionCallback = std::function<void(const xtypes::DynamicData& message,
→˓void* filter_handle)>;

bool subscribe(
const std::string& topic_name,
const xtypes::DynamicType& message_type,
SubscriptionCallback callback,
const YAML::Node& configuration);

bool is_internal_message(
void* filter_handle);

Integration Service will call the subscribe method in order to create a new subscriber to the topic topic_name
using message_type type, plus an optional configuration. Once the middleware system receives a message
from the subscription, the message must be translated into the message_type and the System Handle must invoke
the callback with the translated message.

The callback will be called only if the is_internal_message method returns false. This prevents Inte-
gration Service from recursively send messages within itself, for example, if a publisher and a subscriber are created
pointing to the same topic. Users must define, for each middleware, the type of the filter_handle parameter, and cast it
accordingly. Some protocols, such as WebSocket, might not need to filter its messages at all; in that case, this method
can be simply implemented as a return false; clause.

38 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

TopicPublisherSystem Class

This kind of system must implement the advertise method:

std::shared_ptr<TopicPublisher> advertise(
const std::string& topic_name,
const xtypes::DynamicType& message_type,
const YAML::Node& configuration);

Integration Service will call this method in order to create a new TopicPublisher to the topic topic_name
using message_type type, and optional configuration.

The TopicPublisher is an interface that must be implemented by a Publisher in order to allow Integration
Service to publish messages to the target middleware. This interface defines a single method publish:

bool publish(const xtypes::DynamicData& message);

When Integration Service needs to publish to the middleware system it will call the TopicPublisher::publish
method, with a message that must be translated from the message_type parameter by the advertise method
above.

ServiceClientSystem Class

This kind of system must implement the create_client_proxy method:

using RequestCallback =
std::function<void(

const xtypes::DynamicData& request,
ServiceClient& client,
std::shared_ptr<void> call_handle)>;

bool create_client_proxy(
const std::string& service_name,
const xtypes::DynamicType& service_type,
RequestCallback callback,
const YAML::Node& configuration);

Integration Service will call this method in order to create a new ServiceClient to the service service_name
using the service_type type, plus an optional configuration. This ServiceClient will be provided as
an argument in the callback invocation when a response is received.

The ServiceClient is an interface that must be implemented by a Client in order to allow Integration Service to
relate a request with its reply. This is done by providing a call_handle both in the call_service method from
ServiceProvider and in the callback from create_client_proxy method. When the reply is received
by another System Handle, its ServiceProvider will call the receive_response method from the Client:

void receive_response(
std::shared_ptr<void> call_handle,
const xtypes::DynamicData& response);

The receive_response:

• Translates the response from service_type and relate the call_handle, if needed, to its middleware’s
request;

• Replies to its middleware.

6.11. System Handle 39

Integration Service Documentation, Release 3.1.0

ServiceProviderSystem Class

This kind of system must implement the create_service_proxy method:

std::shared_ptr<ServiceProvider> create_service_proxy(
const std::string& service_name,
const xtypes::DynamicType& service_type,
const YAML::Node& configuration);

Integration Service will call this method in order to create a new ServiceProvider to the service
service_name using the service_type type, plus an optional configuration.

The ServiceProvider is and interface that must be implemented by a Server in order to allow Integration
Service to request (or call) a service from the target middleware.

void call_service(
const xtypes::DynamicData& request,
ServiceClient& client,
std::shared_ptr<void> call_handle);

This call_service method will translate the request from service_type and will call its middleware ser-
vice, which stores the related call_handle and client. Once it receives the response from its middleware,
it must translate back the response and retrieve the call_handle and client related. Then, it will invoke the
receive_response method from the client using the call_handle as argument.

6.11.3 Sequence diagrams

The following diagrams illustrate the previous sections using a generic System Handle.

TopicPublisher flow

40 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

TopicSubscriber flow

ServiceClient flow

Note that a ServiceClient acts as a client for Integration Service and as a server for the middleware.

6.11. System Handle 41

Integration Service Documentation, Release 3.1.0

ServiceProvider flow

Note that a ServiceProvider acts as a server for Integration Service and as a client for the middleware.

6.12 YAML Configuration

The first part of this section provides a general overview of all the parameters available to configure and launch an
Integration Service instance. To get more detailed information on every subsection, please have a look at the list
below:

• Types definition

• Systems definition

• Routes definition

• Topics definition

• Services definition

• Remapping

The Integration Service can be configured during runtime by means of a dedicated YAML file. This configuration file
must follow a specific syntax, meaning that it is required that a number of compulsory sections are opportunely filled
for it to successfully configure and launch an Integration Service instance, while others are optional. Both kinds are
listed and reviewed below:

• types: (optional): It allows to list the IDL types used by the Integration Service to later define the topics and
services types which will take part in the communication process.

This field can be omitted for certain Integration Service instances where one or more System Handles already in-
clude(s) static type definitions and their corresponding transformation libraries (Middleware Interface Extension
or mix files).

42 Chapter 6. Contact and commercial support

https://www.omg.org/spec/IDL/4.2/About-IDL/

Integration Service Documentation, Release 3.1.0

types:
idls:

- >
#include <GoodbyeWorld.idl>
struct HelloWorld
{
string data;
GoodbyeWorld bye;

};
paths: ["/home/idl_files/goodbyeworld/"]

Several parameters can be configured within this section:

– idls: List of IDL type definitions that can be directly embedded within the configuration file. If the
types section is defined, this subsection is mandatory. The type can be entirely defined within the YAML
file, or can be included from a preexisting IDL file; for the latter, the system path containing where the IDL
file is stored must be placed into the paths section described below.

– paths (optional): Using this parameter, an existing IDL type written in a separate file can be included
within the Integration Service types section. If the IDL path is not listed here, the previous subsection
#include preprocessor directive will fail.

For more details on this section, please refer to the Types definition subsection of this page.

• systems: Specifies which middlewares will be involved in the communication process, allowing to configure
them individually.

Some configuration parameters are common for all the supported middlewares within the Integration Service
ecosystem; while others are specific of each middleware. To see which parameters are relevant for a certain
middleware, please refer to its dedicated subsection in the Built-in System Handles page.

systems:
foo: { type: foo }
bar: { type: bar, types-from: foo }

In relation to the common parameters, their behavior is explained in the following section:

– type: Middleware or protocol kind. To date, the supported middlewares are: fastdds, ros1, ros2, fiware,
websocket_server and websocket_client. There is also a mock option, mostly used for testing purposes.

– types-from (optional): Configures the types inheritance from a given system to another. This allows
to use types defined within Middleware Interface Extension files for a certain middleware into another
middleware, without the need of duplicating them or writing an equivalent IDL type for the rest of systems.

For more details on this section, please refer to the Systems definition subsection of this page.

• routes: In this section, a list must be introduced, corresponding to which bridges are needed by Integration
Service in order to fulfill the intercommunication requirements for a specific use case.

At least one route is required; otherwise, running Integration Service would be useless.

routes:
foo_to_bar: { from: foo, to: bar }
bar_to_foo: { from: bar, to: foo }
foo_server: { server: foo, clients: bar }
bar_server: { server: bar, clients: foo }

There are two kinds of routes, corresponding to either a publication/subscription paradigm or a server/client
paradigm:

6.12. YAML Configuration 43

Integration Service Documentation, Release 3.1.0

– from-to: Defines a route from one (or several) system(s) to one (or several) system(s). A from system
expects to connect a publisher user application with a subscriber user application in the to system.

– server-clients: Defines a route for a request/reply architecture in which there are one or several
clients which forward request petitions and listen to responses coming from a server, which must be
unique for each service route.

For more details on this section, please refer to the Routes definition subsection of this page.

• topics: Specifies the topics exchanged over the routes listed above corresponding to the publication-
subscription paradigm. The topics must be specified in the form of a YAML dictionary, meaning that two topics
can never have the same name.

For each topic, some configuration parameters are common for all the supported middlewares within the Integra-
tion Service ecosystem; while others are specific of each middleware. To see which topic parameters must/can
be configured for a certain middleware, please refer to its dedicated subsection in the Built-in System Handles
page.

topics:
hello_foo:
type: HelloWorld
route: bar_to_foo

hello_bar:
type: HelloWorld
route: foo_to_bar
remap: { bar: { topic: HelloBar } }

In relation to the common parameters, their behavior is explained below:

– type: The topic type name. This type must be defined in the types section of the YAML configuration
file, or it must be loaded by means of a Middleware Interface Extension file by any of the
middleware plugins or System Handles involved in the communication process.

– route: Communication bridge to be used for this topic. The route must be one among those defined in
the routes section described above.

– remap (optional): Allows to establish equivalences between the topic name and its type, for any of
the middlewares defined in the used route. This means that the topic name and type name may vary in
each user application endpoint that is being bridged, but, as long as the type definition is equivalent, the
communication will still be possible.

For more details on this section, please refer to the Topics definition subsection of this page.

• services: Allows to define the services that Integration Service will be in charge of bridging, according to
the service routes listed above for the client/server paradigm. The services must be specified in the form of a
YAML dictionary, meaning that two services can never have the same name.

For each service, some configuration parameters are common for all of the supported middlewares within the In-
tegration Service ecosystem; while others are specific of each middleware. To see which parameters must/can be
configured for a certain middleware in the context of a service definition, please refer to its dedicated subsection
in the Built-in System Handles page.

services:
serve_foo:

request_type: FooRequest
reply_type: FooReply
route: foo_server

serve_bar:
request_type: BarRequest
reply_type: BarReply

(continues on next page)

44 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

(continued from previous page)

route: bar_server
remap: { foo: { request_type: bar_req, reply_type: bar_repl, topic: ServeBar }

→˓ }

Regarding the common parameters, they differ slightly from the topics section:

– type (optional): The service type. As services usually are composed of a request and a reply, this field
only makes sense for those services which consist solely of a request action with no reply. Usually, within
the services context, it is not used at all.

– request_type: The service request type. This type must be defined in the types section of the YAML
configuration file, or must be loaded by means of a Middleware Interface Extension file by
any of the middleware plugins, or System Handles, involved in the communication process.

– reply_type: The service reply type. This type must be defined in the types section of the YAML
configuration file, or must be loaded by means of a Middleware Interface Extension file by
any of the middleware plugins, or System Handles, involved in the communication process.

– route: Communication bridge to be used for this service. The route must be one among those defined in
the routes section described above and must be a route composed of a server and one or more clients.

– remap (optional): Allows to establish equivalences between the service name (topic field) and its request
and reply type, for any of the middlewares defined in the used route. This means that the service name
and types names may vary in each user application endpoint that is being bridged, but, as long as the type
definition is equivalent, the communication will still be possible.

For more details on this section, please refer to the Services definition subsection of this page.

6.12.1 Types definition

Some System Handles have the ability to inform Integration Service of the types definition (using xTypes) that they
can use. The System Handles of ROS 1 and ROS 2 are examples of this. Nevertheless, there are cases where the
System Handle is not able to retrieve the type specification (websocket, mock, dds, fiware, . . .) that it needs for the
communication.

In those cases, there are two ways to pass this information to the System Handle:

• Using the types-from property, that imports the types specification from another system.

• Specifying the type yourself by embedding an IDL into the YAML.

Regarding the second option, the IDL content can be provided in the YAML either directly, as follows:

types:
idls:

- >
struct name
{

idl_type1 member_1_name;
idl_type2 member_2_name;

};

or by inclusion of a paths field, that can be used to provide the preprocessor with a list of paths where to search for
IDL files to include into the IDL content. The syntax in this case would be:

types:
idls:

- >
(continues on next page)

6.12. YAML Configuration 45

https://github.com/eProsima/xtypes

Integration Service Documentation, Release 3.1.0

(continued from previous page)

#include <idl_file_to_parse.idl>

paths: [idl_file_to_parse_path]

Notice that these two approaches can be mixed.

The name for each type can be whatever the user wants, with the two following rules:

1. The name cannot have spaces in it.

2. The name must be formed only by letters, numbers and underscores.

Note: A minimum of a structure type is required for the communication.

For more details about IDL definition, please refer to the IDL specification documentation.

The following is an example of a full configuration defining a dds-fiware communication using the types definition
contained in the idls block.

types:
idls:

- >
struct Stamp
{

int32 sec;
uint32 nanosec;

};

struct Header
{

string frame_id;
stamp stamp;

};

systems:
dds: { type: dds }
fiware: { type: fiware, host: 192.168.1.59, port: 1026 }

routes:
fiware_to_dds: { from: fiware, to: dds }
dds_to_fiware: { from: dds, to: fiware }

topics:
hello_dds:

type: "Header"
route: fiware_to_dds

hello_fiware:
type: "Header"
route: dds_to_fiware

46 Chapter 6. Contact and commercial support

https://www.omg.org/spec/IDL/4.2/PDF

Integration Service Documentation, Release 3.1.0

6.12.2 Systems definition

A System Handle may need additional configuration that should be defined in its systems entry as a YAML map.
Each entry of this section represents a middleware involved in the communication, and corresponds to an instance of
a System Handle. All System Handles accept the type and types-from options in their systems entry. If type
is omitted, the key of the YAML entry will be used as type.

systems:
dds:
ros2_domain5: { type: ros2, domain: 5, node_name: "ros_node_5" }
fiware: { host: 192.168.1.59, port: 1026 }

The snippet above will create three System Handles instances:

• A DDS System Handle instance, with default configuration.

• A ROS 2 System Handle instance, named ros2_domain with domain = 5 and node_name = "is_5".

• A FIWARE System Handle instance, with host = 192.168.1.59 and port = 1026.

The System Handles currently available for Integration Service are listed in a table that you can find in the Built-in
System Handles section of this documentation.

A new System Handle can be created by implementing the desired SystemHandle subclasses to add support to any
other protocol or system. For more information consult the System Handle section.

6.12.3 Routes definition

This section allows enumerating the bridges between the systems that Integration Service must manage. To achieve
bidirectional communication, both ways must be specified.

routes definition keywords are specific depending on whether the route is defining a publisher/subscriber path
(from-to) or a service/client communication path (server-client). For example:

routes:
ros2_to_dds: { from: ros2_domain5, to: dds }
dds_to_ros2: { from: dds, to: ros2_domain5 }
dds_server: { server: dds, clients: ros2_domain5 }
fiware_server: { server: fiware, clients: [dds, ros2_domain5] }

This YAML defines the following routes:

• The route ros2_to_dds defines a ros2_domain5 publisher with a dds subscriber.

• The route dds_to_ros2 defines a dds publisher with a ros2_domain5 subscriber.

6.12. YAML Configuration 47

Integration Service Documentation, Release 3.1.0

• Having the routes ros2_to_dds and dds_to_ros2 results in a bidirectional communication between the
ros2_domain5 and dds systems.

• The route dds_server defines a dds server with only one client: ros2_domain5.

• The route fiware_server defines a fiware server with two clients: ros2_domain5 and dds.

6.12.4 Topics definition

Each system is able to publish/subscribe to each other’s topics. These publish/subscription policies are set directly
in the YAML configuration file by specifying the topic type and its route (which system is the publisher and
which is the subscriber) as the main parameters:

topics:
point_to_ros2:

type: "geometry_msgs/Point"
route: dds_to_ros2

point_to_dds:
type: "geometry_msgs/Point"
route: ros2_to_dds

• The topic point_to_ros2 will create a dds publisher and a ros2_domain5 subscriber.

• The topic point_to_dds will create a ros2_domain5 publisher and a dds subscriber.

If a custom System Handle needs additional configuration regarding the topics, it can be added to the topic definition
as new map entries.

6.12.5 Services definition

service definition is very similar to topics definition, with the difference that in this case routes can only be
chosen among the ones specified with the server/client syntax; also, the type entry for these fields usually follows
the request/response model, pairing each of them with the corresponding route, depending on which system acts
as the server and which as the client(s).

services:
get_map:

type: "nav_msgs/GetMap"
route: dds_server

(continues on next page)

48 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

(continued from previous page)

update_position:
type: "Position"
route: fiware_server

• The service get_map will create a dds server and a ros2_domain5 client.

• The service update_position will create a fiware server, and dds and ros2_domain5 clients.

If a custom System Handle needs additional configuration regarding the services, it can be added in the service
definition as new map entries.

Note: If the type field is defined, as in the example above, this type will be taken into consideration as the request
type. If a certain service needs to distinguish between request and reply types, the fields request_type and
reply_type must be used instead.

6.12.6 Remapping

Sometimes, topics or types from one system are different from those managed by the systems with which it is
being bridged. To solve this, Integration Service allows to remap types and topics in the Topics definition and in
the Services definition.

services:
set_destination:

type: "nav_msgs/Position"
route: dds_server

(continues on next page)

6.12. YAML Configuration 49

Integration Service Documentation, Release 3.1.0

(continued from previous page)

remap:
dds:

type: "dds/Destination"
topic: "command_destination"

In this services entry, the remap section defines the type and the topic that must be used in the dds system,
instead of the ones defined by the service definition, which will be used by the ros2_domain5 system.

6.13 Integration Service Core

This section presents the API provided by the Integration Service is-core library.

6.13.1 Core

This section of the API reference corresponds to the include/is/core folder of the Integration Service main repository.

This folder contains several files that can be divided into two different categories:

• Those located in the include/is/core folder, which are intended for parsing, configuring and executing an
Integration Service instance.

Config

class eprosima::is::core::internal::Config
Internal representation of the configuration provided to the Integration Service instance, by
means of a YAML file.

Public Types

using SubscriptionCallbacks = std::vector<std::unique_ptr<is::TopicSubscriberSystem::SubscriptionCallback>>
Signature for the container used to store the subscription callbacks for a certain Integration
Service instance.

using RequestCallbacks = std::vector<std::unique_ptr<is::ServiceClientSystem::RequestCallback>>
Signature for the container used to store the service request callbacks for a certain Integra-
tion Service instance.

50 Chapter 6. Contact and commercial support

https://github.com/eProsima/Integration-Service/tree/main/core/include/is/core

Integration Service Documentation, Release 3.1.0

Public Functions

Config(const YAML::Node &node = YAML::Node(), const std::string &filename =
"<text>")

Constructor.

Parameters
– [in] node: Parsed representation of the YAML configuration file. It defaults to

empty.
– [in] filename: The path of the YAML configuration file.

bool parse(const YAML::Node &node, const std::string &filename = "<text>")
Parses the provided configuration, according to the configuration file scheme defined for
Integration Service.

Configuration files typically contain the following sections:
i. types: Specifies the IDL types used by Integration Service to transmit messages. These
IDL definitions will be parsed using eprosima::xtypes parser for IDL files, and the
resulting Dynamic Types will be added to the available types database.

The following subsections are permitted:

1.1. idl: IDL content.

1.2. paths: includes paths containing IDL definitions that will also be parsed and added
to the types database.

ii. systems: Lists the middlewares involved in the communication, allowing to configure
them. Custom aliases can be given to any system.

The following subsections are permitted:

2.1. type: to be selected among the middlewares supported by Integration Service:
ros2, dds, websocket, ros1. . .

2.2. types-from: allows to inherit type definitions from one system to another. In this
way, users do not have to redefine types for each system.

2.3. Custom configuration parameters, such as domain_id (for ROS 2). Each Sys-
temHandle may define its own configuration fields, please refer to their documentation
for more details.

iii. routes: Lists the communication bridges that Integration Service needs to establish
among systems. Each route has a specific name.

The following subsections are permitted:

3.1. from/to: publisher/subscriber communication.

3.2. server/clients: server/client communication.
iv. topics/services: Allows to configure the topics exchanged over the routes de-

scribed above, in either publisher/subscriber or client/server communication, and provides
detailed information about them. Each topic or service must have a unique name in the
YAML file.

The following subsections are permitted:

4.1. type: Type involved in the communication. It can be a built-in type, usually coming
from a mix library; or a custom user-defined type, by means of an IDL definition.

4.2. route: Communication bridge, of the ones defined above, that must perform the
communication.

4.3. remap: allows to establish equivalences between topic names and types for
each system involved in the communication.

6.13. Integration Service Core 51

Integration Service Documentation, Release 3.1.0

4.4. Custom configuration parameters, which are specific for each middleware. Please
refer to the specific SystemHandle documentation.

Return True if the parsing was correct, false if some error occurred.
Parameters

– [in] node: The parsed YAML representation of the configuration file provided.
– [in] filename: The path of the configuration file.

bool okay() const
Checks if everything is okay with the configuration process.

Return The _okay boolean parameter.

operator bool() const
bool operator overload.

Return The okay() parameter.

bool load_middlewares(is::internal::SystemHandleInfoMap &info_map) const
Performs a search and loads the dynamic libraries required for each middleware, that is, the
SystemHandle entities.

After the SystemHandle shared library is loaded successfully, the required types to be found
during the SystemHandle configuration phase are registered, according to what was specified
in the YAML configuration.

Next, the types-from parameter is checked, which specifies the middleware from which
each SystemHandle wants to inherit types from, as declared in the configuration.

Finally, for each SystemHandle, the configure method is called. If one of the middle-
wares listed is not properly configured, the whole process fails.

Return Boolean value indicating whether the load process was successful or not.
Parameters

– [out] info_map: Map between the middlewares and their SystemHandle instances
information (handle pointer, topic publisher and subscriber and service client and
provider systems, as well as its type registry). This map should be filled with the
information for all the SystemHandle defined in the configuration, once this method
succeeds.

bool configure_topics(const is::internal::SystemHandleInfoMap &info_map, Sub-
scriptionCallbacks &subscription_callbacks) const

Configures topics communication, according to the specified route, type and remapping
parameters.

First, compatibility between the type defined in the from endpoint and the to (destination)
endpoint is checked, because it could happen that, because of a remapping, the type defini-
tion in the source and destination systems is slightly (or completely) different. To do that,
check_topic_compatibility is called. Please refer to its documentation for more
details.

If the types are compatible, the next step is to check the publishing capabilities of the des-
tination endpoint, and if everything is correct, that is, if the system has an associated Top-
icPublisherSystem, the SystemHandle advertises the topic. This publication will transmit
the data to the user application, which must define a subscriber capable of receiving and
processing the data.

Then, in the source endpoint, the existence of subscribing capabilities is checked, and, if
so, the subscriber defines a SubscriptionCallback lambda, that iterates through the previous
constructed list of publishers and ensures that each defined destination endpoint gets the data

52 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

published. This callback is used to call to TopicSubscriberSystem::subscribe
method.

If any of the defined topics cannot find publishing or subscription capabilities (i.e. invalid
routes), the returned value will be false and the process will fail.

Return true if all the topics were successfully configured, false otherwise.
Parameters

– [in] info_map: Map filled during the load_middlewares phase and contain-
ing the information for each loaded SystemHandle, in terms of its instance, supported
types and publish/subscribe or client/server capabilities.

– [in] subscription_callbacks: Reference to the map used to store all of the
active subscription callbacks for a certain SystemHandle instance.

bool configure_services(const is::internal::SystemHandleInfoMap &info_map,
RequestCallbacks &request_callbacks) const

Configures services, according to the specified route, type and remapping parameters.

First, compatibility between the request and reply types defined in the server endpoint and
the clients endpoints is checked, because it could happen that, because of a remapping,
the types defined for request/reply is slightly (or completely) different in the server and
client endpoints. To do that, check_service_compatibility is called. Please refer
to its documentation for more details.

If the types are compatible, the next step is to check the service providing capabilities of
the server endpoint, and if everything is correct, that is, if the system has an associated
ServiceProviderSystem, the SystemHandle creates the corresponding service provider proxy.

Then, for all the defined clients, ServiceClientSystem capabilities are
checked, and a request callback is defined, which basically executes the
ServiceProvider::call_service method from the associated provider. This
call_service is then responsible of sending back the response to the client, if
applicable (that is, if a reply_type has been defined in the YAML configuration.)

If any of the defined services cannot find server or client capabilities (i.e. invalid routes),
the returned value will be false and the process will fail.

Return true if all the services were successfully configured, false otherwise.
Parameters

– [in] info_map: Map filled during the load_middlewares phase and contain-
ing the information for each loaded SystemHandle, in terms of its instance, supported
types and publish/subscribe and client/server capabilities.

– [in] request_callbacks: Reference to the map used to store all of the active
request callbacks for a certain SystemHandle instance.

bool check_topic_compatibility(const is::internal::SystemHandleInfoMap
&info_map, const std::string &topic_name,
const TopicConfig &config) const

Checks compatibility between the TopicInfo registered in the endpoints responsible for a
topic publish/subscribe communication in Integration Service.

This compatibility check is ensured thanks to eProsima xtypes library and its
TypeConsistency definition. If types are not equal, some policies might be automati-
cally applied to try to make them compatible, such as ignoring member names, type signs,
etc.

Return true if the topic is compatible among the defined systems, false otherwise.
Parameters

6.13. Integration Service Core 53

Integration Service Documentation, Release 3.1.0

– [in] info_map: Map filled during the load_middlewares phase and contain-
ing the information for each loaded SystemHandle, in terms of its instance, supported
types and publish/subscribe or client/server capabilities.

– [in] topic_name: The topic whose compatibility will be checked between end-
points.

– [in] config: TopicConfig structure containing information such as the type, the
source/destination defined route and the remappings, as well as the specific middleware
configurations for this topic.

bool check_service_compatibility(const is::internal::SystemHandleInfoMap
&info_map, const std::string &ser-
vice_name, const ServiceConfig &config)
const

Checks compatibility between the ServiceConfig registered in the endpoints responsible of
a server/client communication in the Integration Service.

This compatibility check is ensured thanks to eProsima xtypes library and its
TypeConsistency definition. If types are not equal, some policies might be automati-
cally applied to try to make them compatible, such as ignoring member names, type signs,
etc.

The check is performed both for request and reply types.

Return true if the service is compatible among the defined systems, false otherwise.
Parameters

– [in] info_map: Map filled during the load_middlewares phase and contain-
ing the information for each loaded SystemHandle, in terms of its instance, supported
types and publish/subscribe and client/server capabilities.

– [in] service_name: The service whose compatibility will be checked between
endpoints.

– [in] config: ServiceConfig structure containing information such as the request
and reply types, the server and clients defined route and the remappings, as well as the
specific middleware configurations for this service.

const eprosima::xtypes::DynamicType *resolve_type(const TypeRegistry &types,
const std::string &path)
const

This function allows to retrieve a type member from an externally defined type containing
it, to use it as the type for a certain configuration.

The used syntax when retrieving the inner type must be <outer_type>.
<type_member_name>.

For example, if a type is defined like this in an IDL:

union MyUnion (switch uint8)
{

case 0: int32 _zero;
case 1: int64 _one;
default: int128 _default;

};

You can define the following topic: ExampleTopic: { route: "a_to_b",
type: MyUnion._zero }

Return A pointer to the inner DynamicType representing the type requested by the user.
Parameters

– [in] types: TypeRegistry containing all the available types where the search of the
parent type will be performed.

54 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

– [in] path: The whole type definition, as specified by the user. In the example, it
would be MyUnion._zero.

Public Static Functions

Config from_file(const std::string &file)
Helper static constructor to retrieve a Config instance from a file path.

Parameters
– [in] file: A string containing the configuration file path.

struct eprosima::is::core::internal::MiddlewareConfig
Holds information relative to each middleware configuration.

Public Members

std::string type
The name of the middleware.

std::vector<std::string> types_from
The name of middleware whose types want to be used.

YAML::Node config_node
YAML configuration associated with the specific middleware.

struct eprosima::is::core::internal::TopicRoute
Stores information relative to topic routes:

Public Functions

std::set<std::string> all() const
Helper method to retrieve at once from and to sets.

Return A set containing all endpoints for this TopicRoute.

Public Members

std::set<std::string> from
Source middleware endpoint.

std::set<std::string> to
Destination middleware endpoint.

struct eprosima::is::core::internal::ServiceRoute
Stores information relative to service routes:

6.13. Integration Service Core 55

Integration Service Documentation, Release 3.1.0

Public Functions

std::set<std::string> all() const
Helper method to retrieve at once server and clients sets.

Return A set containing all endpoints for this ServiceRoute.

Public Members

std::set<std::string> clients
Client endpoints.

std::string server
Server endpoint.

struct eprosima::is::core::internal::TopicInfo
Struct containing information about a certain topic.

Public Members

std::string name
The name of the topic.

std::string type
The name of the type for the specific topic.

using eprosima::is::core::internal::ServiceInfo = TopicInfo
Struct containing information about a certain service.

– std::string name The name of the service.
– std::string type The name of the request type for the specific service.
– std::string reply_type The name of the reply type for the specific service.

struct eprosima::is::core::internal::TopicConfig
Holds the configuration provided for a certain topic.

Public Members

std::string message_type
The name of the type for the specific topic.

TopicRoute route
The route followed by the specific topic.

std::map<std::string, TopicInfo> remap
A map with the remaps needed for the specific topic.

std::map<std::string, YAML::Node> middleware_configs
A map with the YAML configuration for the specific topic.

struct eprosima::is::core::internal::ServiceConfig
This struct stores the configuration provided for a certain service.

56 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Public Members

std::string request_type
The name of the request type for the specific service.

std::string reply_type
The name of the reply type for the specific service.

ServiceRoute route
The route followed by the specific service.

std::map<std::string, ServiceInfo> remap
A map with the remaps needed for the specific service.

std::map<std::string, YAML::Node> middleware_configs
A map with the YAML configuration for the specific service.

Instance

class eprosima::is::core::Instance
Base class for creating an Integration Service instance. It can be called directly, or under the
wrapping methods run_instance.

Public Functions

Instance(int argc, char *argv[])
Creates an Integration Service instance which receives the arguments fed by the user from
the command line.

Parameters
– [in] argc: Number of arguments given.
– [in] argv: String representation list of arguments provided, to be parsed before

launching the instance.

Instance(const YAML::Node &config_node, const std::vector<std::string>
&is_prefixes, const MiddlewarePrefixPathMap &middleware_prefixes)

Creates an Integration Service instance explicitly indicating the configuration of the Integra-
tion Service core and of the dedicated middleware SystemHandle plugins, and setting their
relevant properties.

Parameters
– [in] config_node: The YAML configuration file, structured as defined in

the is::core::internal::Config::parse() method documentation, that
should be provided to Integration Service to successfully start a communication be-
tween two or more applications using different communication protocols.

– [in] is_prefixes: Global prefix paths for Integration Service to search for con-
figuration files or mix files. These act as a complement to the already existing envi-
ronment variables created during compilation/installation steps by CMake.

– [in] middleware_prefixes: Prefix paths specific to a certain middleware.
Used when loading a middleware’s plugin, that is, its SystemHandle implementation.

Instance(const std::string &config_file_path, const std::vector<std::string>
&is_prefixes, const MiddlewarePrefixPathMap &middleware_prefixes)

Creates an Integration Service instance explicitly indicating the configuration of the Integra-
tion Service core and of the dedicated middleware SystemHandle plugins, and setting their
relevant properties.

6.13. Integration Service Core 57

Integration Service Documentation, Release 3.1.0

Parameters
– [in] config_file_path: The YAML configuration file, structured as defined in

the is::core::internal::Config::parse() method documentation, that
should be provided to Integration Service to successfully start a communication be-
tween two or more applications using different communication protocols.

– [in] is_prefixes: Global prefix paths for Integration Service to search for con-
figuration files or mix files. These act as a complement to the already existing envi-
ronment variables created during compilation/installation steps by CMake.

– [in] middleware_prefixes: Prefix paths specific to a certain middleware.
Used when loading a middleware’s plugin, that is, its SystemHandle implementation.

~Instance()
Destructor.

InstanceHandle run()
Runs the Integration Service instance in its own thread.

The handle allows to wait on that thread or instruct it to quit.

The handle uses RAII, so the instance will stop running automatically if the InstanceHandle
dies.

If run() is called again while another instance handle is still alive and running, the new
instance handle will still refer to the previously started and still running instance. Calling
quit() on any of the handles will make them all quit. The automatic RAII shutdown of
the instance will become effective once all handles have died.

If the existing handles are still alive but no longer running, they will become detached from
this instance, and calling run() will initiate a new set of instance handles.

In most cases, simply calling one of the run_instance() functions and not worrying
about how InstanceHandle entities might interact is more than enough.

Return An InstanceHandle to manage the running Integration Service instance.

using eprosima::is::core::MiddlewarePrefixPathMap = std::unordered_map<std::string, std::vector<std::string>>
MiddlewarePrefixPathMap contains a map of the prefixes that are available for each middleware.
These prefixes are used to look for the dynamic libraries of either the SystemHandle plugin or
the MiddlewareInterfaceExtension files and, once they are located, to load them.

See Search

InstanceHandle

class eprosima::is::core::InstanceHandle
This is the class responsible of handling an Integration Service instance.

It allows to perform several actions on the Integration Service instance, such as asking whether it
is running or not or handling the threads that are launched each time a SystemHandle is launched
from the core.

It also allows to quit the instance in a safe way, waiting for the pending jobs to finish.

58 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Public Functions

InstanceHandle(const InstanceHandle &other)
Copy constructor.

Parameters
– [in] other: The InstanceHandle to be copied.

InstanceHandle(InstanceHandle &&other)
Move constructor.

Parameters
– [in] other: Movable reference to another InstanceHandle object.

~InstanceHandle()
Destructor.

The destructor will call quit() and then wait(), because the Integration Service in-
stance cannot run without the handle active.

bool running() const
It allows to check if the instance is still running.

Return true if the Integration Service instance is still running, false otherwise.

operator bool() const
bool() operator overload. It performs an implicit cast to running().

Return true if the Integration Service instance is still running, false otherwise.

int wait()
Waits for the instance to stop running.

The instance may be stopped by calling quit() or by sending SIGINT (ctrl+C from
the terminal).

Return The return code for the execution process of this instance.

InstanceHandle &wait_for(const std::chrono::nanoseconds &max_time)
Waits for the instance to stop running, or for the max time to be reached.

Return A reference to this instance handle, so that it can be chained with quit() or
wait().

Parameters
– [in] max_time: Time, in nanoseconds, to wait for the instance to finish running.

InstanceHandle &quit()
Instructs the node handle to quit (this will not occur instantly).

After this, it calls wait() in order to wait until the instance has finished running, and
retrieves the return code.

Return A reference to this instance handle so that it can be chained with wait_for() or
wait().

const TypeRegistry *type_registry(const std::string &middleware_name)
Requests the TypeRegitry for a given middleware.

Return A pointer to the TypeRegistry, or nullptr if the middleware does not exist.
Parameters

– [in] middleware_name: The middleware whose TypeRegistry is to be retrieved.

6.13. Integration Service Core 59

Integration Service Documentation, Release 3.1.0

core::InstanceHandle eprosima::is::run_instance(int argc, char *argv[])
Creates an Integration Service instance and runs it in its own thread. This is a wrapper for the
core::Instance constructor and for the core::Instance::run() method.

Return An InstanceHandle to manage the running Integration Service instance.
Parameters

– [in] argc: Number of given arguments.
– [in] argv: String representation list of the provided arguments, to be parsed before

launching the instance.

core::InstanceHandle eprosima::is::run_instance(const std::string &con-
fig_file_path, const
std::vector<std::string>
&is_prefixes = {}, const
core::MiddlewarePrefixPathMap
&middleware_prefixes = {})

Creates an Integration Service instance and runs it in its own thread. This is a wrapper for the
core::Instance constructor and the run() method.

Return An InstanceHandle to manage the running Integration Service instance.
Parameters

– [in] config_file_path: The YAML configuration file, structured as defined in the
is::core::internal::Config::parse() method documentation, that should
be provided to Integration Service to successfully start a communication between two or
more applications using different communication protocols.

– [in] is_prefixes: Global prefix paths for Integration Service to search for config-
uration files or mix files. These act as a complement to the already existing environment
variables created during compilation/installation steps by CMake.

– [in] middleware_prefixes: Prefix paths specific to a certain middleware. Used
when loading a middleware’s plugin, that is, its SystemHandle implementation.

core::InstanceHandle eprosima::is::run_instance(const YAML::Node
&config_node, const
std::vector<std::string>
&is_prefixes = {}, const
core::MiddlewarePrefixPathMap
&middleware_prefixes = {})

Creates an Integration Service instance and runs it in its own thread. This is a wrapper for the
core::Instance constructor and the run() method.

Return An InstanceHandle to manage the running Integration Service instance.
Parameters

– [in] config_node: The YAML configuration file, structured as defined in the
is::core::internal::Config::parse() method documentation, that should
be provided to Integration Service to successfully start a communication between two or
more applications using different communication protocols.

– [in] is_prefixes: Global prefix paths for Integration Service to search for config-
uration files or mix files. These act as a complement to the already existing environment
variables created during compilation/installation steps by CMake.

– [in] middleware_prefixes: Prefix paths specific to a certain middleware. Used
when loading a middleware’s plugin, that is, its SystemHandle implementation.

• Those located in the include/is/core/runtime folder, which corresponds with the runtime necessary
tools. To date, these include the search tool to load the .mix associated with the System Handles that will be
used during execution and the tool that allows accessing the fields specified in the YAML configuration file.

60 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

FieldToString

class eprosima::is::core::FieldToString
Convenience class for converting simple field types into strings. It is useful to discern between
the different Dynamic Types that may be requested to be replaced in a certain StringTemplate,
and perform the conversion accordingly.

Public Functions

FieldToString(const std::string &usage_details)
Constructor.

Parameters
– [in] usage_details: Sets the details for how the conversion should be used.

FieldToString(const FieldToString &other)
Copy Constructor.

Parameters
– [in] other: The instance to be copied.

FieldToString(FieldToString &&other)
Move Constructor.

Parameters
– [in] other: The instance to be moved.

~FieldToString() = default
Destructor.

const std::string to_string(eprosima::xtypes::ReadableDynamicDataRef field,
const std::string &field_name) const

Converts a certain field to a string, given the field name.

Return A const string representation of the requested field.
Parameters

– [in] field: Reference to the Dynamic Data instance representing the field’s val-
ues.

– [in] field_name: The specific field whose value should be retrieved.

const std::string &details() const
Gets a const reference to the details attribute.

Return A const string reference to “details”.

std::string &details()
Gets a mutable reference to the details attribute.

Return A non-const string reference to “details”.

class eprosima::is::core::UnknownFieldToStringCast : public runtime_error
Exception that gets thrown by FieldToString when it’s unknown how to convert a given field
type into a string.

6.13. Integration Service Core 61

Integration Service Documentation, Release 3.1.0

Public Functions

UnknownFieldToStringCast(const std::string &type, const std::string
&field_name, const std::string &details)

Constructor.

Parameters
– [in] type: The type kind that should have been cast to a string.
– [in] field_name: The field whose conversion to string was unsuccessfully at-

tempted.
– [in] details: The details on how the conversion is being done.

~UnknownFieldToStringCast() = default
Destructor.

const std::string &type() const
Getter method for _type parameter.

Return A const reference to the field type string.

const std::string &field_name() const
Getter method for the field’s name.

Return A const reference to the field’s name string.

Mix

using eprosima::is::core::Mix = MiddlewareInterfaceExtension

class eprosima::is::core::MiddlewareInterfaceExtension
Abbreviated as “Mix”, allows to generate mix files which contain the required dynamic libraries
for a certain Integration Service instance to be loaded.

Also, when talking about a specific SystemHandle, mix files are used to list the necessary dy-
namic libraries, containing information about conversion from the specific middleware data type
definition (such as ROS 2 msg) to xtypes, and viceversa.

Libraries within the mix file are listed using the following structure:
– For Linux systems: "dl" : "../../<relative_path_to_dl>"
– On Windows platforms: "dll" : "../../<relative/path_to_dll>"

These extensions are automatically generated by is_mix_generator CMake function
and they contain information about specific types, such as their conversion methods to/from
xtypes.

Public Functions

MiddlewareInterfaceExtension(YAML::Node &&mix_content, const
std::string &absolute_file_directory_path)

Constructor.

Parameters
– [in] mix_content: Movable reference representing the content of the mix file.
– [in] absolute_file_directory_path: Absolute path where the mix file is

stored. This path will be later on used as a starting point to navigate to the relative
paths defined by the mix file, so that dynamic libraries can be loaded.

MiddlewareInterfaceExtension(const MiddlewareInterfaceExtension
&other) = delete

MiddlewareInterfaceExtension shall not be copy constructible.

62 Chapter 6. Contact and commercial support

https://github.com/eProsima/xtypes

Integration Service Documentation, Release 3.1.0

MiddlewareInterfaceExtension(MiddlewareInterfaceExtension &&other)
Move constructor.

Parameters
– [in] other: Movable reference to another MiddlewareInterfaceExtension instance.

~MiddlewareInterfaceExtension()
Destructor.

bool load()
Performs the load operation of the dynamic libraries defined in the mix file.

Return true if the dynamic libraries were loaded successfully, false otherwise.

Public Static Functions

MiddlewareInterfaceExtension from_file(const std::string &filename)
Creates a MiddlewareInterfaceExtension representation from a mix file path.

Return A properly initialized MiddlewareInterfaceExtension object.
Parameters

– [in] filename: Path to the mix file.

MiddlewareInterfaceExtension from_string(const std::string &mix_text,
const std::string &abso-
lute_file_directory_path)

Creates a MiddlewareInterfaceExtension representation from a text YAML representation
and an absolute file directory path.

Return A properly initialized MiddlewareInterfaceExtension object.
Parameters

– [in] mix_text: Content of the mix file, in text format.
– [in] absolute_file_directory_path: Path from where to start looking for

dynamic libraries defined in the mix content.

MiddlewareInterfaceExtension from_node(YAML::Node &&node, const std::string
&absolute_file_directory_path)

Creates a MiddlewareInterfaceExtension representation from a YAML node representation
and an absolute file directory path.

Return A properly initialized MiddlewareInterfaceExtension object.
Parameters

– [in] node: Content of the mix file, in YAML format.
– [in] absolute_file_directory_path: Path from where to start looking for

the dynamic libraries defined in the mix content.

Search

class eprosima::is::core::Search
This class searches for Integration Service message/service plugin resource files, called Middle-
wareInterfaceExtension (.mix) files.

These files will be searched based on a fixed lookup scheme. This lookup scheme comprises
two phases:

– First, it searchs based on the middleware prefixes mw_prefix.
– Second, it searchs based on the Integration Service prefixes <is_prefix>.

6.13. Integration Service Core 63

Integration Service Documentation, Release 3.1.0

The middleware prefixes and Integration Service prefixes can be passed in as com-
mand line arguments or set as environment variables. Command line arguments
will take precedence over environment variables. The environment variable named
IS_PREFIX_PATH will be added to the Integration Service prefixes <is_prefix>, and
IS_<MIDDLEWARE_NAME>_PREFIX_PATH will be added to the middleware prefixes
mw_prefix. The environment variables should be a colon-separated list of absolute paths.

Additionally, the contents of the LD_LIBRARY_PATH variable will be added to the Integration
Service prefixes <is_prefix>, because the resource directory is expected to be inside a lib di-
rectory. Finally, /usr/local/lib/<arch>, /usr/local/lib, /usr/lib/<arch>,
and /usr/lib will be added to the Integration Service prefixes <is_prefix> in this same
order of precedence.

Lookup Scheme

The lookup scheme is described below, where mw_prefix and <is_prefix> are defined
above. <middleware> refers to the name of the middleware (as given to the constructor
of the Search class). type is the type name of the message or service. In cases of ROS
<msg|srv|*>, messages will use msg while services use srv; when searching for things
other than messages or services, a custom string can be substituted for *.

– <mw_prefix>/<msg|srv|*>/<type>.mix
– <mw_prefix>/<type>.mix
– <is_prefix>/<middleware>/<msg|srv|*>/<type>.mix
– <is_prefix>/<middleware>/<type>.mix
– <is_prefix>/is/<middleware>/<msg|srv|*>/<type>.mix
– <is_prefix>/is/<middleware>/<type>.mix

The type value will usually look like package_name/MessageType. Any slashes within the
type name will be used as a directory delimiters while searching.

Lookup Pattern

Similarly, the lookup pattern for the base Integration Service middleware interface extension file
(<middleware>.mix) will be:

– <mw_prefix>/<middleware>.mix
– <is_prefix>/<middleware>.mix
– <is_prefix>/is/<middleware>.mix
– <is_prefix>/is/<middleware>/<middleware>.mix

Public Functions

Search(const std::string &middleware_name)
Creates a Search utility instance for the specified middleware.

Parameters
– [in] middleware_name: The middleware for which a Search utility will be cre-

ated.

Search(const Search &other)
Copy constructor.

Parameters
– [in] other: Const reference to the Search object to be copied.

Search(Search &&other)
Move constructor.

Parameters

64 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

– [in] other: Movable reference of the Search object to be moved.

Search &operator=(const Search &other)
Copy assignment operator.

Return A reference to this Search instance.
Parameters

– [in] other: Right assignment operand to be copied to this Search object.

Search &operator=(Search &&other)
Copy assignment operator.

Return A reference to this Search instance.
Parameters

– [in] other: Right assignment operand to be moved to this Search object.

~Search()
Destructor.

void add_priority_middleware_prefix(const std::string &path)
Adds priority to the specified path. The paths given here will be used as the first option
during the search.

Parameters
– [in] path: The path to prioritize.

void add_fallback_middleware_prefix(const std::string &path)
Adds a custom middleware prefix path. The paths given here will be used as mw_prefix
path prefixes, and will be checked after all other middleware prefixes have been exhausted.
The prefix paths passed to this function will be evaluated starting from the path most recently
passed in to the first one passed in (i.e. in reverse order).

Parameters
– [in] path: An absolute path to use as a middleware prefix search path.

const std::string find_message_mix(const std::string &msg_type,
std::vector<std::string> *checked_paths =
nullptr) const

Looks for a mix file that provides information for a message type.

Return The full path to the .mix file if found. If not found, it will return an empty string.
Parameters

– [in] msg_type: This type will be used for type in the search scheme.
– [out] checked_paths: If given a non-nullptr, it will be filled with a list of the

paths that were searched. It may be useful for debugging purposes.

const std::string find_service_mix(const std::string &srv_type,
std::vector<std::string> *checked_paths =
nullptr) const

Looks for a mix file that provides information for a service type.

Return The full path to the .mix file if found. If not found, it will return an empty string.
Parameters

– [in] srv_type: This type will be used for type in the search scheme.
– [out] checked_paths: If given a non-nullptr, it will be filled with a list of the

paths that were searched. It may be useful for debugging purposes.

const std::string find_generic_mix(const std::string &type, const std::string
&subdir = "", std::vector<std::string>
*checked_paths = nullptr) const

Looks for a mix file that provides information for a type which is not a message nor a

6.13. Integration Service Core 65

Integration Service Documentation, Release 3.1.0

service.

Return The full path to the .mix file if found. If not found, it will return an empty string.
Parameters

– [in] type: This type will be used for type in the search scheme.
– [in] subdir: This will replace <msg|srv|*> in the search scheme. Leave this

as an empty string to not search in a <msg|srv|*> subdirectory.
– [out] checked_paths: If given a non-nullptr, it will be filled with a list of the

paths that were searched. It may be useful for debugging purposes.

const std::string find_file(const std::string &filename, const std::string &subdir
= "", std::vector<std::string> *checked_paths = nullptr)
const

Looks for any file (with any extension, not just .mix) that may be residing in an Integration
Service or middleware subdirectory.

Return The full path to the file if found. If not found, it will return an empty string.
Parameters

– [in] filename: The name of the file, including its extension. This should include
any nested directories that it may contain relative to the Integration Service or middle-
ware directories.

– [in] subdir: A subdirectory that might or might not be nested into the Integration
Service or middleware directories.

– [out] checked_paths: If given a non-nullptr, it will be filled with a list of the
paths that were searched. It may be useful for debugging purposes.

const std::string find_middleware_mix(std::vector<std::string> *checked_paths =
nullptr) const

Looks for a mix file for the middleware specified during the construction of this Search
instance.

Parameters
– [out] checked_paths: If given a non-nullptr, it will be filled with a list of the

paths that were searched. It may be useful for debugging purposes.

Search &relative_to_config(bool toggle = true)
It can be used to toggle the Search to check for files relative to the directory of the config
file that was used to launch the Integration Service.

By default, this behavior is turned off.

The config-file directory will be treated as a middleware prefix, whose priority comes di-
rectly before the “fallback” middleware prefixes. It will be searched after “priority” mid-
dleware prefixes, and after any prefix passed in as command line argument or given as
environment variables.

Return A reference to this very Search instance.
Parameters

– [in] toggle: Boolean to enable or disable this behavior.

Search &relative_to_home(bool toggle = true)
It can be used to toggle the Search to check for files relative to the user’s home directory.

By default this behavior is turned off.

The home directory will be treated as a middleware prefix, whose priority is the same as
the relative_to_config() priority, except relative_to_config() will have
higher priority if both are activated at the same time.

Return A reference to this very Search instance.
Parameters

66 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

– [in] toggle: Boolean to enable or disable this behavior.

Search &ignore_system_prefixes(bool toggle = true)
It can be used to toggle whether the system prefixes are ignored or not. Note that this has
some overlap with the ignore_is_prefixes option.

By default these prefixes are not ignored.

Return A reference to this very Search instance.
Parameters

– [in] toggle: Boolean to enable or disable this behavior.

Search &ignore_is_prefixes(bool toggle = true)
It can be used to toggle whether all Integration Service prefixes are ignored or not. Note that
this has some overlap with the ignore_system_prefixes option.

By default these prefixes are not ignored.

Return A reference to this very Search instance.
Parameters

– [in] toggle: Boolean to enable or disable this behavior.

Search &ignore_middleware_prefixes(bool toggle = true)
It can be used to toggle whether the middleware prefixes are ignored or not.

By default these prefixes are not ignored.

Return A reference to this very Search instance.
Parameters

– [in] toggle: Boolean to enable or disable this behavior.

Public Static Functions

void add_cli_is_prefix(const std::string &path)
Used by the Instance class to set Integration Service prefixes that were specified from the
command line.

Parameters
– [in] path: The path to be added as the Integration Service prefix.

void add_cli_middleware_prefix(const std::string &middleware, const
std::string &path)

Used by the Instance class to set middleware prefixes that were specified from the command
line.

Parameters
– [in] middleware: The middleware to which the prefix will be added.
– [in] path: The path to be added as the Integration Service prefix.

void set_config_file_directory(const std::string &path)
Used by the Instance class to set the path where the configuration file is stored.

Parameters
– [in] path: The path to be set as the configuration directory.

const std::string to_env_format(const std::string &str)
Convert a given string to environment format.

Return A properly formatted string to the env format.
Parameters

– [in] str: The string to be converted.

6.13. Integration Service Core 67

Integration Service Documentation, Release 3.1.0

StringTemplate

class eprosima::is::core::StringTemplate
Allows to create a partially filled string with certain parameterizable fields that can be replaced
during runtime. It is also possible to specify some details on how the template should be used.

More information about how to construct and properly use it is available on the StringTemplate
constructor.

Public Functions

StringTemplate(const std::string &template_string, const std::string &us-
age_details)

Constructor.

Parameters
– [in] template_string: A string that describes the desired template. Vary-

ing components of the string must be wrapped in curly braces {}. Currently only
{message.<field>} variables are supported. The varying components of the
string will be replaced by the value of the requested field when compute_string()
is called.

– [in] usage_details: A string that describes how this StringTemplate is being
used.

StringTemplate(const StringTemplate &other)
Copy constructor.

Parameters
– [in] other: const reference to a StringTemplate instance to be copied.

StringTemplate(StringTemplate &&other)
Move constructor.

Parameters
– [in] other: Movable reference to a StringTemplate instance.

~StringTemplate()
Destructor.

const std::string compute_string(const eprosima::xtypes::DynamicData &mes-
sage) const

Computes the desired output string, given the input message.

Return The computed string with the required substitutions properly made.
Parameters

– [in] message: The message used to compute the string template parameters.

std::string &usage_details()
Gets a mutable reference to the usage_details for this StringTemplate.

Return The mutable reference to the usage_details string.

const std::string &usage_details() const
Gets a const reference to the usage_details for this StringTemplate.

Return A const reference to the usage_details string.

class eprosima::is::core::InvalidTemplateFormat : public runtime_error
Runtime error that gets thrown when a certain runtime substitution string template is malformed
in the YAML file.

68 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Public Functions

InvalidTemplateFormat(const std::string &template_string, const std::string
&details)

Constructor.

Parameters
– [in] template_string: The source string containing the malformed template.
– [in] details: Correct usage details of this template.

~InvalidTemplateFormat() = default
Destructor.

const std::string &template_string() const
Gets a const reference to the malformed StringTemplate.

Return A const reference to the template.

class eprosima::is::core::UnavailableMessageField : public runtime_error
Runtime error that gets thrown when a certain field, required to perform the substitution in a
StringTemplate, is unavailable within the provided Dynamic Data.

Public Functions

UnavailableMessageField(const std::string &field_name, const std::string
&details)

Constructor.

Parameters
– [in] field_name: The field which was not found during the substitution.
– [in] details: Details on how to use this template.

const std::string &field_name() const
Gets a const reference to the field’s name.

Return A const reference to the string representing the field’s name.

6.13.2 System Handle

This section of the API reference corresponds to the include/is/systemhandle folder of the Integration Service main
repository.

This folder contains the files that allow the creation of new System Handles and their registry within the system.

RegisterSystem

class eprosima::is::internal::Register
Static class that contains a static map of is::detail::SystemHandleFactoryBuilder instances.

is::detail::SystemHandleFactoryBuilder is nothing but a function signature that helps in the creation of a
std::unique_ptr<SystemHandle> object.

In this way, each time a given SystemHandle instance is required, it will be created from the factory map.

6.13. Integration Service Core 69

https://github.com/eProsima/Integration-Service/tree/main/core/include/is/systemhandle

Integration Service Documentation, Release 3.1.0

Public Static Functions

void insert(std::string &&middleware, detail::SystemHandleFactoryBuilder &&handle)
Inserts a new is::detail::SystemHandleFactoryBuilder element in the factory map.

Parameters

• [in] middleware: The middleware’s name.

• [in] handle: The handle function responsible for creating the SystemHandle instance.

SystemHandleInfo get(const std::string &middleware)
Gets the SystemHandleInfo object associated to a given middleware.

Return A SystemHandleInfo object which is properly initialized if the middleware exists and it is regis-
tered within the Register, or pointing to nullptr otherwise.

Parameters

• [in] middleware: The middleware from which we want to obtain a SystemHandleInfo in-
stance.

using eprosima::is::internal::SystemHandleInfoMap = std::map<std::string, SystemHandleInfo>

class eprosima::is::internal::SystemHandleInfo
Storage class that holds all the information relative to a certain SystemHandle instance.

This class will retrieve the corresponding TopicPublisherSystem, TopicSubscriberSystem, ServiceClientSystem
and ServiceProviderSystem instances associated to the SystemHandle instance, if applicable.

If not applicable, these instances will just be cast to nullptr. Later on, this will allow to know whether a
certain SystemHandle comes or not with any of these four working capabilities.

Also, a is::TypeRegistry is defined, where all the types that the SystemHandle instance must know prior to start
performing any conversion are defined.

Public Functions

SystemHandleInfo(std::unique_ptr<SystemHandle> input)
Constructor.

Parameters

• [in] input: The SystemHandle instance which we want to obtain information from.

SystemHandleInfo(const SystemHandleInfo &other) = delete
SystemHandleInfo shall not be copy constructible.

SystemHandleInfo(SystemHandleInfo &&other)
Move constructor.

Parameters

• [in] other: A movable reference to other SystemHandleInfo instances.

~SystemHandleInfo() = default
Destructor.

70 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

operator bool() const
bool() operator overload.

Return true if the pointer to the handle is not nullptr, false otherwise.

Public Members

std::unique_ptr<SystemHandle> handle
Class members.

System Handle

class eprosima::is::SystemHandle
It is the base interface class for all middleware systems.

All middleware systems that want to interact with Integration Service must implement, at least, this interface.

Depending on the type of middleware, it should also implement the derived classes, using multiple virtual
inheritance:

• TopicSubscriberSystem: provides subscribing capabilities.

• TopicPublisherSystem: provides publishing capabilities.

• ServiceClientSystem: allows to manage middleware service clients.

• ServiceProviderSystem: allows to manage middleware service servers.

A SystemHandle implementing the four interfaces described above is called a FullSystem, and it is usually the
base class used for implementing a middleware plugin for the Integration Service.

Subclassed by eprosima::is::ServiceClientSystem, eprosima::is::ServiceProviderSystem,
eprosima::is::TopicPublisherSystem, eprosima::is::TopicSubscriberSystem

Public Functions

SystemHandle() = default
Default constructor.

SystemHandle(const SystemHandle&) = delete
SystemHandle shall not be copy constructible.

SystemHandle &operator=(const SystemHandle&) = delete
SystemHandle shall not be copy assignable.

SystemHandle(SystemHandle&&) = delete
SystemHandle shall not be move constructible.

SystemHandle &operator=(SystemHandle&&) = delete
SystemHandle shall not be move assignable.

~SystemHandle() = default
Destructor.

bool configure(const core::RequiredTypes &types, const YAML::Node &configuration, TypeReg-
istry &type_registry) = 0

Configures the Integration Service handle for this middleware’s system.

6.13. Integration Service Core 71

Integration Service Documentation, Release 3.1.0

Return true if the configuration process was successful, false otherwise.

Parameters

• [in] types: The set of types (messages and services) that this middleware needs to support.
The SystemHandle must register this type into the is::TypeRegistry, using for that the storage class
is::internal::SystemHandleInfo.

• [in] configuration: The configuration specific for this SystemHandle, as described in the
user-provided YAML input file. See the specific SystemHandle implementation documentation for
a list of accepted configuration parameters for each middleware.

• [in] type_registry: The set of type definitions that this middleware is able to support.

bool okay() const = 0
Method that allows to check if a SystemHandle is correctly working.

Return true if the SystemHandle is under normal behavior, false otherwise.

operator bool() const
bool() operator overload. Implicit conversion, same as okay().

Return true if the SystemHandle is under normal behavior, false otherwise.

bool spin_once() = 0
Tell the SystemHandle to spin once, e.g. read through its subscriptions.

Return true if the SystemHandle is still working; false otherwise.

class eprosima::is::TopicSubscriberSystem : public virtual eprosima::is::SystemHandle
Extends the SystemHandle class with subscription capabilities.

Subclassed by eprosima::is::TopicSystem

Public Types

using SubscriptionCallback = std::function<void(const xtypes::DynamicData &message,
void *filter_handle)>

Signature of the callback that gets triggered when a subscriber receives some data.

Public Functions

TopicSubscriberSystem() = default
Constructor.

~TopicSubscriberSystem() = default
Destructor.

bool subscribe(const std::string &topic_name, const xtypes::DynamicType &message_type, Sub-
scriptionCallback *callback, const YAML::Node &configuration) = 0

Has this SystemHandle instance subscribed to a topic.

Return true if subscription was successfully established, false otherwise.

Parameters

• [in] topic_name: Name of the topic to get subscribed to.

72 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

• [in] message_type: Message type that this topic should expect to receive.

• [in] callback: The callback which should be triggered when a message comes in.

• [in] configuration: A YAML node containing any middleware-specific configuration in-
formation for this subscription. This may be an empty node.

bool is_internal_message(void *filter_handle) = 0
Check if a certain message in a subscriber comes from a middleware publisher created by Integration
Service in the same SystemHandle instance.

This method must be implemented by each SystemHandle according to its middleware and protocol in-
tricacies and particularities. Some protocols might not need this at all. This method is called, during the
SubscriptionCallback function, to avoid sending messages indefinitely, thus creating an infinite loop.

Parameters

• [in] filter_handle: Opaque pointer to entity containing the information used to perform
the filtering; this is usually meta-information regarding the just received message instance in the
middleware’s subscriber side.

class eprosima::is::TopicPublisher
This is the abstract interface for objects that can act as publisher proxies.

These objects will be created by Integration Service as bridges between the common data representation
(eprosima::xtypes) and the user subscription applications, when data are to be published from one mid-
dleware to another.

These objects should be generated by the TopicPublisherSystem advertise() method.

Public Functions

TopicPublisher() = default
Constructor.

~TopicPublisher() = default
Destructor.

bool publish(const xtypes::DynamicData &message) = 0
Publishes to a topic.

Return true if the data was correctly published, false otherwise.

Parameters

• [in] message: DynamicData that is being published.

class eprosima::is::TopicPublisherSystem : public virtual eprosima::is::SystemHandle
This class extends the SystemHandle class by providing it with publishing capabilities.

Subclassed by eprosima::is::TopicSystem

6.13. Integration Service Core 73

Integration Service Documentation, Release 3.1.0

Public Functions

TopicPublisherSystem() = default
Constructor.

~TopicPublisherSystem() = default
Destructor.

std::shared_ptr<TopicPublisher> advertise(const std::string &topic_name, const
xtypes::DynamicType &message_type, const
YAML::Node &configuration) = 0

Advertises the ability to publish to a topic.

Return true if the advertisement was successful, false otherwise.

Parameters

• [in] topic_name: Name of the topic to advertise.

• [in] message_type: Message type that this entity will publish.

• [in] configuration: A YAML node containing any middleware-specific configuration in-
formation for this publisher. This may be an empty node.

class eprosima::is::TopicSystem : public virtual eprosima::is::TopicPublisherSystem, public virtual eprosima::is::TopicSubscriberSystem
It is the conjunction of TopicPublisherSystem and TopicSubscriberSystem. It allows to create a middleware
library for Integration Service fully compatible with the publish/subscribe paradigm.

Subclassed by eprosima::is::FullSystem

Public Functions

TopicSystem() = default
Constructor.

~TopicSystem() = default
Destructor.

class eprosima::is::ServiceClient
This is the abstract interface for objects that can act as client proxies.

This class is different from ServiceClientSystem, because ServiceClientSystem is the interface for SystemHandle
libraries that are able to support client proxies, whereas ServiceClient is the interface for the client proxy objects
themselves.

This class, when overridden by the specific middleware implementation, will typically contain a
middleware::server object, so that receive_response can fetch the response sent by the user server
application (usually, implemented using a different middleware) and pass this response to the target user client
application, which will receive the final response by means of the internal server created by this ServiceClient.

74 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Public Functions

ServiceClient() = default
Constructor.

~ServiceClient() = default
Destructor.

void receive_response(std::shared_ptr<void> call_handle, const xtypes::DynamicData &re-
sponse) = 0

Receives the response of a service request.

Attention Services are assumed to all be asynchronous (non-blocking), so this function may be called by
multiple threads at once. developers implementing a ServiceClient derived class must make sure that
they can handle multiple simultaneous calls to this function.

Parameters

• [in] call_handle: The handle that was given to the call by this ServiceClient. The usage of
the handle is determined by the ServiceClient implementation. Typically, receive_response
will cast this handle into a useful object type that contains information on where to send the
service response message.

• [in] response: The message that represents the response from the service.

class eprosima::is::ServiceClientSystem : public virtual eprosima::is::SystemHandle
This class extends the SystemHandle class with service client handling capabilities.

Subclassed by eprosima::is::ServiceSystem

Public Types

using RequestCallback = std::function<void(const xtypes::DynamicData &request, Ser-
viceClient &client, std::shared_ptr<void>
call_handle)>

Signature of the callback that gets triggered when a client has made a request.

Public Functions

ServiceClientSystem() = default
Constructor.

~ServiceClientSystem() = default
Destructor.

bool create_client_proxy(const std::string &service_name, const xtypes::DynamicType
&service_type, RequestCallback *callback, const YAML::Node
&configuration)

Create a proxy for a client application.

Return true if a client proxy could be created, false otherwise.

Parameters

• [in] service_name: Name of the service this client proxy shall listen to.

• [in] service_type: Service request and reply type to expect.

6.13. Integration Service Core 75

Integration Service Documentation, Release 3.1.0

• [in] callback: The callback that should be used when a request comes in from the middle-
ware.

• [in] configuration: A YAML node containing any middleware-specific configuration in-
formation for this service client. This may be an empty node.

bool create_client_proxy(const std::string &service_name, const xtypes::DynamicType &re-
quest_type, const xtypes::DynamicType &reply_type, RequestCall-
back *callback, const YAML::Node &configuration)

Create a proxy for a client application.

Return true if a client proxy could be created, false otherwise.

Parameters

• [in] service_name: Name of the service for this client to listen to.

• [in] request_type: Type of service request to expect.

• [in] reply_type: Type of service reply to expect.

• [in] callback: The callback that should be used when a request comes in from the middle-
ware.

• [in] configuration: A YAML node containing any middleware-specific configuration in-
formation for this service client. This may be an empty node.

class eprosima::is::ServiceProvider
This is the abstract interface for objects that can act as service server proxies.

This class is different from ServiceProviderSystem, because ServiceProviderSystem is the interface for Sys-
temHandle libraries that are able to support service server proxies, whereas ServiceProvider is the interface for
the service server proxy objects themselves.

This class, when overridden by the specific middleware implementation, will typically contain a
middleware::client object that will actually send the request to the user server application. After pro-
cessing the request by means of the call_service method, thanks to the associated ServiceClient entity,
receive_response will be called, to pass the response to the user client application (typically, imple-
mented using a different middleware, which justifies the use of the Integration Service to interconnect them).

Public Functions

ServiceProvider() = default
Constructor.

~ServiceProvider() = default
Destructor.

void call_service(const xtypes::DynamicData &request, ServiceClient &client,
std::shared_ptr<void> call_handle) = 0

Call a service.

Attention It is important that this function:

i. Is non-blocking.

ii. Calls client.receive_response() when the service finishes.

Parameters

• [in] request: Request message for the service.

76 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

• [inout] client: The proxy for the client that is making the request.

• [in] call_handle: A handle for the call. The usage of this handle is determined by the
ServiceClient implementation. The ServiceProvider should not attempt to cast or modify it in any
way; it should only be passed back to the ServiceClient later on, when receive_response()
is called.

class eprosima::is::ServiceProviderSystem : public virtual eprosima::is::SystemHandle
This class extends the SystemHandle class with service server handling capabilities.

Subclassed by eprosima::is::ServiceSystem

Public Functions

ServiceProviderSystem() = default
Constructor.

~ServiceProviderSystem() = default
Destructor.

std::shared_ptr<ServiceProvider> create_service_proxy(const std::string &service_name,
const xtypes::DynamicType &ser-
vice_type, const YAML::Node
&configuration)

Create a proxy for a service server.

Return true if the middleware’s SystemHandle can offer this service, false otherwise.

Parameters

• [in] service_name: Name of the service to offer.

• [in] service_type: Type of service being offered.

• [in] configuration: A YAML node containing any middleware-specific configuration in-
formation for this service provider. This may be an empty node.

std::shared_ptr<ServiceProvider> create_service_proxy(const std::string &service_name,
const xtypes::DynamicType
&request_type, const
xtypes::DynamicType &reply_type,
const YAML::Node &configuration)

Creates a proxy for a service server.

Return true if the middleware’s SystemHandle can offer this service, false otherwise.

Parameters

• [in] service_name: Name of the service to offer.

• [in] request_type: Type of service request being offered.

• [in] reply_type: Type of service reply being offered.

• [in] configuration: A YAML node containing any middleware-specific configuration in-
formation for this service provider. This may be an empty node.

class eprosima::is::ServiceSystem : public virtual eprosima::is::ServiceClientSystem, public virtual eprosima::is::ServiceProviderSystem
It is the conjunction of ServiceProviderSystem and ServiceClientSystem. Allows to create a middleware library
for Integration Service fully compatible with the request/reply paradigm.

6.13. Integration Service Core 77

Integration Service Documentation, Release 3.1.0

Subclassed by eprosima::is::FullSystem

Public Functions

ServiceSystem() = default
Constructor.

~ServiceSystem() = default
Destructor.

class eprosima::is::FullSystem : public virtual eprosima::is::TopicSystem, public virtual eprosima::is::ServiceSystem
It is the conjunction of ServiceSystem and TopicSystem. It allows to define a whole middleware, in terms of both
publish/subscribe and request/reply paradigms.

Usually, most middleware plugins for Integration Service will inherit from this class.

Public Functions

FullSystem() = default
Constructor.

~FullSystem() = default
Destructor.

struct eprosima::is::core::RequiredTypes
Contains the set of topics and services types required in order to successfully create an Integration Service
instance, based on the configuration provided.

Public Members

std::set<std::string> messages
Set of topic types stated within the configuration file.

std::set<std::string> services
Set of service types stated within the configuration file.

using eprosima::is::TypeRegistry = std::map<std::string, xtypes::DynamicType::Ptr>
Map used to store the DynamicType name mapped to its representation.

IS_REGISTER_SYSTEM(middleware_name_str, SystemType)
Call this macro in a .cpp file of your middleware’s plugin library, so that the Integration Service can find your
eprosima::is::SystemHandle implementation when your plugin library gets dynamically loaded. For example:

IS_REGISTER_SYSTEM("my_middleware", my::middleware::SystemHandle)

The first argument should be a string representing the name of the middleware. This should match the name in
the system: dictionary of your Integration Service configuration file. Each middleware should have a unique
name.

The second argument should be the literal type (not a string) of the class that implements
eprosima::is::SystemHandle in your plugin library.

78 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

SystemHandleFactory

template<typename SystemHandleImplType>
class eprosima::is::detail::SystemHandleRegistrar

Builder class to help register any SystemHandle kind, during runtime.

Template Parameters

• SystemHandleImplType: The is::SystemHandle overridden implementation kind, for a certain
middleware.

Public Functions

SystemHandleRegistrar(std::string &&middleware)
Constructor.

Parameters

• [in] middleware: The middleware name to be registered into the factory.

using eprosima::is::detail::SystemHandleFactoryBuilder = std::function<std::unique_ptr<SystemHandle>()>
Signature of the function that gets triggered when a new SystemHandle instance is created.

void eprosima::is::detail::register_system_handle_factory(std::string &&middle-
ware, SystemHandleFac-
toryBuilder &&handle)

Wrapper method for is::internal::Register::insert.

Parameters

• [in] middleware: The middleware’s name.

• [in] handle: The handle function responsible for creating the SystemHandle instance.

6.13.3 Utils

This section of the API reference corresponds to the include/is/utils folder of the Integration Service main repository.

This folder contains the logger tool and the conversion library used for those middlewares that use static types, such
as ROS 2 and ROS 1.

Convert

template<typename Type>
struct eprosima::is::utils::Convert

A utility to help with converting data between generic DynamicData field objects and middleware-specific data
structures.

This struct will work as-is on primitive types (a.k.a. arithmetic types or strings), but a template specialization
for converting to or from any complex class types should be created.

6.13. Integration Service Core 79

https://github.com/eProsima/Integration-Service/tree/main/core/include/is/utils

Integration Service Documentation, Release 3.1.0

Public Types

using native_type = Type
Alias for the Type.

Public Static Functions

void from_xtype_field(const xtypes::ReadableDynamicDataRef &from, native_type &to)
Move data from a xTypes DynamicData field to a native middleware data structure.

Parameters

• [in] from: A readable reference to the DynamicData field to be transferred.

• [in] to: The destination native middleware data structure.

void to_xtype_field(const native_type &from, xtypes::WritableDynamicDataRef to)
Move data from a native middleware data structure to a xTypes DynamicData field.

Parameters

• [in] from: A readable reference to the middleware native data structure to be transferred.

• [in] to: A writable reference to the target DynamicData field.

Public Static Attributes

constexpr bool type_is_primitive = std::is_arithmetic<Type>::value || std::is_same<std::string, Type>::value || std::is_same<std::basic_string<char16_t>, Type>::value
Const expression to check if the type is primitive or not.

struct eprosima::is::utils::CharConvert
A class that helps create a Convert<> specialization for managing some char issues.

‘rosidl’ parse ‘char’ types as ‘signed’ values from ‘msg’ files and parse as ‘unsigned’ from idl files. This create
a mismatched between types. This patch solves this issue when the native type differs from the DynamicData
type for this specific case.

Note This specialization can be removed safety if rosidl modifies its behavior.

Subclassed by eprosima::is::utils::Convert< char >

Public Types

using native_type = char
Alias for the Type.

80 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Public Static Functions

void from_xtype_field(const xtypes::ReadableDynamicDataRef &from, native_type &to)
Documentation inherited from Convert.

void to_xtype_field(const native_type &from, xtypes::WritableDynamicDataRef to)
Documentation inherited from Convert.

template<typename ElementType, template<typename, typename> class NativeType, typename Allocator, std::size_t UpperBound, std::enable_if_t<std::is_base_of<std::vector<ElementType, Allocator>, NativeType<ElementType, Allocator>>::value, bool> = true>
struct eprosima::is::utils::ResizableUnboundedContainerConvert

A class that helps create a Convert<> specialization for resizable unbounded container message types.

To create a specialization for a native middleware message type, do the following:

namespace eprosima {
namespace is {
namespace utils {

template<typename ElementType, typename Allocator>
struct Convert<native::middleware::type<ElementType, Allocator> >

: ResizableUnboundedContainerConvert<
ElementType,
native::middleware::type,
Allocator,
size_t::upperbound::limit

> { };

} // namespace utils
} // namespace is
} // namespace eprosima

Note The UpperBound limit could typically be calculated as

std::numeric_limits<typename native::middleware::type<ElementType, Allocator>
→˓::size_type>::max()

Public Static Functions

void from_xtype(const xtypes::ReadableDynamicDataRef &from, std::vector<bool>::reference to)
This template specialization is needed to deal with the edge case produced by vectors of bools.
std::vector<bool> is specialized to be implemented as a bitmap, and as a result its operator[] cannot return
its bool elements by reference. Instead it returns a “reference” proxy object.

void from_xtype_field(const xtypes::ReadableDynamicDataRef &from, native_type &to)
Documentation inherited from Convert.

void to_xtype_field(const native_type &from, xtypes::WritableDynamicDataRef to)
Documentation inherited from Convert.

template<typename ElementType, template<typename, std::size_t, typename> class NativeType, typename Allocator, std::size_t UpperBound>
struct eprosima::is::utils::ResizableBoundedContainerConvert

A class that helps create a Convert<> specialization for resizable bounded container message types.

To create a specialization for a native middleware message type, do the following:

namespace eprosima {
namespace is {

(continues on next page)

6.13. Integration Service Core 81

Integration Service Documentation, Release 3.1.0

(continued from previous page)

namespace utils {

template<typename ElementType, std::size_t N, typename Allocator, template
→˓<typename, std::size_t, typename> class VectorImpl>
struct Convert<VectorImpl<ElementType, N, Allocator> >

: ResizableBoundedContainerConvert<
ElementType,
VectorImpl,
Allocator,
N

> { };

} // namespace utils
} // namespace is
} // namespace eprosima

Public Static Functions

void from_xtype_field(const xtypes::ReadableDynamicDataRef &from, native_type &to)
Documentation inherited from Convert.

void to_xtype_field(const native_type &from, xtypes::WritableDynamicDataRef to)
Documentation inherited from Convert.

template<typename ElementType, template<typename, std::size_t> class NativeType, std::size_t UpperBound, std::enable_if_t<std::is_base_of<std::array<ElementType, UpperBound>, NativeType<ElementType, UpperBound>>::value || std::is_base_of<boost::array<ElementType, UpperBound>, NativeType<ElementType, UpperBound>>::value, bool> = true>
struct eprosima::is::utils::NonResizableContainerConvert

A class that helps create a Convert<> specialization for non resizable container message types.

To create a specialization for a native middleware message type, do the following:

namespace eprosima {
namespace is {
namespace utils {

template<template <typename, std::size_t> class Array, typename ElementType,
→˓std::size_t N>
struct Convert<Array<ElementType, N> >

: NonResizableContainerConvert<
ElementType,
Array,
N

> { };

} // namespace utils
} // namespace is
} // namespace eprosima

82 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Public Static Functions

void from_xtype_field(const xtypes::ReadableDynamicDataRef &from, native_type &to)
Documentation inherited from Convert.

void to_xtype_field(const native_type &from, xtypes::WritableDynamicDataRef to)
Documentation inherited from Convert.

Log

class eprosima::is::utils::Logger
Allows to easily log information into the standard output. It should be used as the preferred method for printing
information within the whole Integration Service suite (core and SystemHandle).

Public Functions

Logger() = default
Default constructor.

Logger(const std::string &header)
Constructor.

Parameters

• [in] header: The user-defined headed that will be printed at the beginning of every logger’s
message.

Logger(const Logger&) = default
Copy constructor.

Logger(const Logger&&) = delete
Logger shall not be move constructible.

~Logger() = default
Destructor.

const Level &get_level() const
Get the maximum logging level for this Logger instance.

Return A non-mutable reference to the maximum permitted logging level: DEBUG, INFO, WARN,
ERROR.

Logger &operator<<(const Level &level)
Operator << overload for a certain logging Level. Sets the logging level for the char/string messages
streamed afterwards, until std::endl is received.

Return A reference to this object.

Parameters

• [in] level: The logging Level of a new upcoming message.

Logger &operator<<(const char *message)
Operator << overload for a certain message.

Return A reference to this object.

6.13. Integration Service Core 83

Integration Service Documentation, Release 3.1.0

Parameters

• [in] message: The message to be printed to stdout.

Logger &operator<<(const std::string &message)
Operator << overload for a certain message.

Return A reference to this object.

Parameters

• [in] message: The message to be printed to stdout.

template<typename T>
Logger &operator<<(const T &value)

Operator << overload for arithmetic types.

Return A reference to this object.

Parameters

• [in] value: A const reference to the numeric value.

Logger &operator<<(std::basic_ostream<char, std::char_traits<char>>
&(*func))std::basic_ostream<char, std::char_traits<char>>&

Operator << overload for ostream function pointer. Useful for streaming special operations, such as
std::endl.

Return A reference to this object.

Parameters

• [in] func: Pointer to std::ostream function.

class Level
Enumeration holding all the possible logging values. Messages logged with a logging priority level lower than
the configured maximum level will not be displayed. This level is configurable via CMake parameters and can
also be set using the provided set_logging_level method API.

• Values:

– Level::ERROR

– Level::WARN

– Level::INFO

– Level::DEBUG

class CurrentLevelStatus
Enumeration class which stores all the possible statuses for the current operation in the logger.

• Values:

– CurrentLevelStatus::NON_SPECIFIED

– CurrentLevelStatus::SPECIFIED

– CurrentLevelStatus::SPECIFIED_BUT_HIDDEN

84 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

6.14 Fast DDS System Handle

This section presents the API provided by the Integration Service is-fastdds library.

6.14.1 Client

class eprosima::is::sh::fastdds::Client : public virtual eprosima::is::ServiceClient, private DataWriterListener, private DataReaderListener
This class represents a DDS Client, built over the publisher/subscriber layer of Fast DDS using the DDS-RPC
paradigm, within the Integration Service framework.

It is composed of a Fast DDS Subscriber, to listen for requests coming from the DDS dataspace; plus a Fast
DDS Publisher, to send replies from the Integration Service back to the DDS service client application.

Its topic type definition and data instances for request and reply types are represented by means of the Fast DDS
Dynamic Types API, which allows to get rid of TypeSupport for each used type and eases users the task of
defining and using their own custom types on the go, by means of a valid IDL definition.

This class inherits from Fast DDS Data Reader Listener and from Fast DDS Data Writer Listener for reacting to
datawriter and datareader events, such as matching with subscribers and publishers or receiving new data from
them.

The request petitions are associated with each received reply by means of the sample identity and the related
sample identity attributes.

Public Functions

Client(eprosima::is::sh::fastdds::Participant *participant, const std::string &service_name, const
xtypes::DynamicType &request_type, const xtypes::DynamicType &reply_type, Service-
ClientSystem::RequestCallback *callback, const YAML::Node &config)

Construct a new Client object.

Parameters

• [in] participant: The associated Integration Service Participant, which holds the DDS
entities that compose this Client.

• [in] service_name: The service name. It will produce two topics:
<service_name>_Request and <service_name>_Reply.

• [in] request_type: A dynamic type definition of the request topic’s type.

• [in] reply_type: A dynamic type definition of the reply topic’s type.

• [in] callback: Callback that gets triggered when a client has made a request.

• [in] config: Additional configuration that might be required to configure this Client.

~Client() override
Destroy the Client object.

Client(const Client &rhs) = delete
Client shall not be copy constructible.

Client &operator=(const Client &rhs) = delete
Client shall not be copy assignable.

Client(Client &&rhs) = delete
Client shall not be move constructible.

6.14. Fast DDS System Handle 85

https://www.omg.org/spec/DDS-RPC/About-DDS-RPC/
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/subscriber/dataReaderListener/dataReaderListener.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/publisher/dataWriterListener/dataWriterListener.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/api_reference/dds_pim/subscriber/sampleinfo.html?highlight=rpc#_CPPv4N8eprosima7fastdds3dds10SampleInfo15sample_identityE
https://fast-dds.docs.eprosima.com/en/latest/fastdds/api_reference/dds_pim/subscriber/sampleinfo.html?highlight=rpc#_CPPv4N8eprosima7fastdds3dds10SampleInfo23related_sample_identityE
https://fast-dds.docs.eprosima.com/en/latest/fastdds/api_reference/dds_pim/subscriber/sampleinfo.html?highlight=rpc#_CPPv4N8eprosima7fastdds3dds10SampleInfo23related_sample_identityE

Integration Service Documentation, Release 3.1.0

Client &operator=(Client &&rhs) = delete
Client shall not be move assignable.

void receive_response(std::shared_ptr<void> call_handle, const xtypes::DynamicData &re-
sponse) override

Inherited from ServiceClient.

bool add_config(const YAML::Node &configuration, ServiceClientSystem::RequestCallback *call-
back)

Handle type remappings for DDS request and reply types. It allows to resolve complex type remappings,
which remap to a specific type member, for example, an UnionType member, by means of the dot .
operator.

Parameters

• [in] configuration: The YAML configuration containing the remapping to be applied.

• [in] callback: The callback that gets triggered when a client has made a request.

6.14.2 DDSMiddlewareException

class eprosima::is::sh::fastdds::DDSMiddlewareException : public runtime_error
Launches a runtime error every time an unexpected behavior occurs related to Fast DDS middleware, when
configuring or using this is::SystemHandle.

Public Functions

DDSMiddlewareException(const utils::Logger &logger, const std::string &message)
Construct a new DDSMiddlewareException object.

Parameters

• [in] logger: The logging tool.

• [in] message: The message to throw the runtime error with.

6.14.3 Participant

class eprosima::is::sh::fastdds::Participant
This class represents a FastDDS DomainParticipant within the Integration Service framework.

It includes a mapping of the topic names to their corresponding Dynamic Type representation, and also mappings
to identify each topic with its type.

This class inherits from Fast DDS DomainParticipantListener class to scan for state changes on the DDS partic-
ipant created by this Integration Service is::SystemHandle.

86 Chapter 6. Contact and commercial support

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/domain/domainParticipant/domainParticipant.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/domain/domainParticipantListener/domainParticipantListener.html

Integration Service Documentation, Release 3.1.0

Public Functions

Participant()
Construct a new Participant, with default values.

Exceptions

• DDSMiddlewareException: If the DomainParticipant could not be created.

Participant(const YAML::Node &config)
Construct a new Participant object with the user-provided parameters in the YAML configuration file.

• file_path: Specifies the path to the XML profile that will be used to configure the DomainPartic-
ipant. More information on how to write these XML profiles can be found here.

• profile_name: Provide a name to search for within the profiles defined in the XML that corre-
sponds to the configuration profile that we want this Participant to be configured with.

Parameters

• [in] config: The configuration provided by the user. It must contain two keys in the YAML
map:

Exceptions

• DDSMiddlewareException: If the XML profile was incorrect and, thus, the DomainPartic-
ipant could not be created.

~Participant()
Destroy the Participant object.

void build_participant(const fastdds::dds::DomainId_t &domain_id = 0)
Construct a Fast DDS DomainParticipant, given its DDS domain ID.

Parameters

• [in] domain_id: The DDS domain ID for this participant.

Exceptions

• DDSMiddlewareException: If the DomainParticipant could not be created.

fastdds::dds::DomainParticipant *get_dds_participant() const
Get the associate FastDDS DomainParticipant attribute.

Return The DDS participant.

void register_dynamic_type(const std::string &topic_name, const std::string &type_name,
fastrtps::types::DynamicTypeBuilder *builder)

Register a Dynamic Type within the types map. Also, register the associated DDS topic.

Parameters

• [in] topic_name: The topic name to be associated to the Dynamic Type.

• [in] type_name: The type name to be registered in the factory.

• [in] builder: A class that represents a builder for the desired Dynamic Type.

Exceptions

6.14. Fast DDS System Handle 87

https://fast-dds.docs.eprosima.com/en/latest/fastdds/xml_configuration/xml_configuration.html

Integration Service Documentation, Release 3.1.0

• DDSMiddlewareException: If the type could not be registered.

fastrtps::types::DynamicData *create_dynamic_data(const std::string &topic_name) const
Create an empty dynamic data object for the specified topic.

Return The empty DynamicData for the required topic.

Parameters

• [in] topic_name: The topic name.

Exceptions

• DDSMiddlewareException: if the topic was not found or the type was not registered previ-
ously.

void delete_dynamic_data(fastrtps::types::DynamicData *data) const
Delete a certain dynamic data from the DomainParticipant database.

Parameters

• [in] data: The dynamic data to be deleted.

const fastrtps::types::DynamicType *get_dynamic_type(const std::string &name) const
Get the dynamic type pointer associated to a certain key.

Return The pointer to the dynamic type if found, or nullptr otherwise.

Parameters

• [in] name: The key to find within the types map.

const std::string &get_topic_type(const std::string &topic) const
Get the type name associated to a certain topic.

Return A const reference to the topic type’s name.

Parameters

• [in] topic: The topic whose type is wanted to be retrieved.

void associate_topic_to_dds_entity(fastdds::dds::Topic *topic, fastdds::dds::DomainEntity
*entity)

Register a topic into the topics map.

Note This method is a workaround until fastdds::dds::DomainParticipant::find_topic
gets implemented.

Parameters

• [in] topic: The name of the topic to register.

• [in] entity: A pointer to the entity to be registered.

bool dissociate_topic_from_dds_entity(fastdds::dds::Topic *topic, fast-
dds::dds::DomainEntity *entity)

Unregister a topic from the topics map.

Note This method is a workaround until fastdds::dds::DomainParticipant::find_topic
gets implemented.

88 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Parameters

• [in] topic: The name of the topic to unregister.

• [in] entity: A pointer to the entity to be unregistered.

6.14.4 Publisher

class eprosima::is::sh::fastdds::Publisher : public virtual eprosima::is::TopicPublisher, private DataWriterListener
This class represents a Fast DDS Publisher within the Integration Service framework.

Its topic type definition and data instances are represented by means of the Fast DDS Dynamic Types API,
which allows to get rid of TypeSupport for each used type and eases users the task of defining and using their
own custom types on the go, by means of a valid IDL definition.

This class inherits from Fast DDS Data Writer Listener for reacting to datawriter events, such as matching with
subscribers.

Public Functions

Publisher(Participant *participant, const std::string &topic_name, const xtypes::DynamicType
&message_type, const YAML::Node &config)

Construct a new Publisher object.

Parameters

• [in] participant: The associated Integration Service Participant, that holds this Pub-
lisher.

• [in] topic_name: The topic that this DDS publisher will send data to.

• [in] message_type: A dynamic type definition of the topic’s type.

• [in] config: Specific configuration regarding this publisher, in YAML format. Allowed fields
are:

– service_instance_name: Specify the DDS RPC service instance name property.

Exceptions

• DDSMiddlewareException: if some error occurs while creating the Fast DDS publisher.

~Publisher() override
Destroy the Publisher object.

Publisher(const Publisher&) = delete
Publisher shall not be copy constructible.

Publisher &operator=(const Publisher&) = delete
Publisher shall not be copy assignable.

Publisher(Publisher&&) = delete
Publisher shall not be move constructible.

Publisher &operator=(Publisher&&) = delete
Publisher shall not be move assignable.

bool publish(const xtypes::DynamicData &message) override
Inherited from TopicPublisher.

6.14. Fast DDS System Handle 89

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/publisher/publisher.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/publisher/dataWriterListener/dataWriterListener.html

Integration Service Documentation, Release 3.1.0

const std::string &topic_name() const
Get the topic name where this publisher sends data to.

Return The topic name.

const fastrtps::rtps::InstanceHandle_t get_dds_instance_handle() const
Get the DDS instance handle object for the associated datawriter.

Return The datawriter instance handle.

6.14.5 Server

class eprosima::is::sh::fastdds::Server : public virtual eprosima::is::ServiceProvider, private DataWriterListener, private DataReaderListener
This class represents a DDS Server, built over the publisher/subscriber layer of Fast DDS using the DDS-RPC
paradigm, within the Integration Service framework.

It is composed of a Fast DDS Publisher, to send the request to the DDS dataspace; plus a Fast DDS Subscriber,
to receive replies from the DDS application server and send them back to the Integration Service.

Its topic type definition and data instances for request and reply types are represented by means of the Fast DDS
Dynamic Types API, which allows to get rid of TypeSupport for each used type and eases users the task of
defining and using their own custom types on the go, by means of a valid IDL definition.

This class inherits from Fast DDS Data Reader Listener and from Fast DDS Data Writer Listener for reacting to
datawriter and datareader events, such as matching with subscribers and publishers or receiving new data from
them.

The request petitions are associated with each received reply by means of the sample identity and the related
sample identity attributes.

Public Functions

Server(eprosima::is::sh::fastdds::Participant *participant, const std::string &service_name, const
xtypes::DynamicType &request_type, const xtypes::DynamicType &reply_type, const
YAML::Node &config)

Construct a new Server object.

Parameters

• [in] participant: The associated Integration Service Participant, which holds the DDS
entities that compose this Server.

• [in] service_name: The service name. It will produce two topics:
<service_name>_Request and <service_name>_Reply.

• [in] request_type: A dynamic type definition of the request topic’s type.

• [in] reply_type: A dynamic type definition of the reply topic’s type.

• [in] config: Additional configuration that might be required to configure this Server.

Exceptions

• DDSMiddlewareExeption: if some error occurs while creating the Fast DDS entities.

~Server() override
Destroy the Server object.

90 Chapter 6. Contact and commercial support

https://www.omg.org/spec/DDS-RPC/About-DDS-RPC/
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/subscriber/dataReaderListener/dataReaderListener.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/publisher/dataWriterListener/dataWriterListener.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/api_reference/dds_pim/subscriber/sampleinfo.html?highlight=rpc#_CPPv4N8eprosima7fastdds3dds10SampleInfo15sample_identityE
https://fast-dds.docs.eprosima.com/en/latest/fastdds/api_reference/dds_pim/subscriber/sampleinfo.html?highlight=rpc#_CPPv4N8eprosima7fastdds3dds10SampleInfo23related_sample_identityE
https://fast-dds.docs.eprosima.com/en/latest/fastdds/api_reference/dds_pim/subscriber/sampleinfo.html?highlight=rpc#_CPPv4N8eprosima7fastdds3dds10SampleInfo23related_sample_identityE

Integration Service Documentation, Release 3.1.0

Server(const Server &rhs) = delete
Server shall not be copy constructible.

Server &operator=(const Server &rhs) = delete
Server shall not be copy assignable.

Server(Server &&rhs) = delete
Server shall not be move constructible.

Server &operator=(Server &&rhs) = delete
Server shall not be move assignable.

void call_service(const xtypes::DynamicData &is_request, ServiceClient &client,
std::shared_ptr<void> call_handle) override

Inherited from ServiceProvider.

bool add_config(const YAML::Node &configuration)
Handle type remappings for DDS request and reply types. It allows to resolve complex type remappings,
which remap to a specific type member, for example, an UnionType member, by means of the dot .
operator.

Return true if success.

Parameters

• [in] configuration: The YAML configuration containing the remapping to be applied.

6.14.6 Subscriber

class eprosima::is::sh::fastdds::Subscriber : private DataReaderListener
This class represents a Fast DDS Subscriber within the Integration Service framework.

Its topic type definition and data instances are represented by means of the Fast DDS Dynamic Types API,
which allows to get rid of TypeSupport for each used type and eases users the task of defining and using their
own custom types on the go, by means of a valid IDL definition.

This class inherits from Fast DDS Data Reader Listener for reacting to datareader events, such as matching with
publishers or receiving new data from them.

Public Functions

Subscriber(Participant *participant, const std::string &topic_name, const xtypes::DynamicType
&message_type, TopicSubscriberSystem::SubscriptionCallback *is_callback)

Construct a new Subscriber object.

Parameters

• [in] participant: The associated Integration Service Participant, which holds this Sub-
scriber.

• [in] topic_name: The topic that this DDS subscriber will attach to.

• [in] message_type: A dynamic type definition of the topic’s type.

• [in] is_callback: Callback function signature defined by the Integration Service, triggered
each time a new data arrives to the DDS Subscriber.

Exceptions

• DDSMiddlewareException: if some error occurs while creating the Fast DDS subscriber.

6.14. Fast DDS System Handle 91

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/subscriber/subscriber.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dynamic_types/dynamic_types.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/subscriber/dataReaderListener/dataReaderListener.html

Integration Service Documentation, Release 3.1.0

~Subscriber()
Destroy the Subscriber object.

Subscriber(const Subscriber&) = delete
Subscriber shall not be copy constructible.

Subscriber &operator=(const Subscriber&) = delete
Subscriber shall not be copy assignable.

Subscriber(Subscriber&&) = delete
Subscriber shall not be move constructible.

Subscriber &operator=(Subscriber&&) = delete
Subscriber shall not be move assignable.

void receive(const fastrtps::types::DynamicData *dds_message, fastdds::dds::SampleInfo sam-
ple_info)

Handle the receiving of a new message from the DDS dataspace.

Parameters

• [in] dds_message: The incoming message.

• [in] sample_info: Structure containing the relevant information regarding the incoming
message.

6.15 ROS 1 System Handle

This section presents the API provided by the Integration Service is-ros1 library.

6.15.1 Factory

class eprosima::is::sh::ros1::Factory
This is a singleton class that allows to gain access to the specific publisher, subscriber, client and server conver-
sion functions, callbacks and other tasks, for each topic and service type.

Coming from the ROS 1 msg and srv files, the Integration Service genmsg plugin will generate the conversion
library files for each of them, after calling the ìs_ros1_genmsg_mix macro in the CMakeLists.txt file of
the ros1_mix_generator CMake project.

The generated conversion files will be compiled into a dynamic library that will be registered to a mix file,
using the is::core::MiddlewareInterfaceExtension API provided by the Integration Service Core. This ROS 1
conversion mix libraries will use this Factory class to register the conversion functions from/to ROS 1 types to
xTypes, as well as the subscription, publisher, service server and service client factories, that will be used later
to create the necessary links in the core to bridge ROS 1 with another middleware supported by the Integration
Service.

92 Chapter 6. Contact and commercial support

https://github.com/eProsima/ROS1-SH/blob/main/utils/ros1-mix-generator/CMakeLists.txt

Integration Service Documentation, Release 3.1.0

Public Types

using RegisterTypeToFactory = std::function<xtypes::DynamicType::Ptr()>
Signature for the method that will be used to register a dynamic type within the types factory.

using RegisterSubscriptionToFactory = std::function<std::shared_ptr<void>(ros::NodeHandle
&node,
const
std::string
&topic_name,
const
xtypes::DynamicType
&mes-
sage_type,
TopicSub-
scriberSys-
tem::SubscriptionCallback
*callback,
uint32_t
queue_size,
const
ros::TransportHints
&trans-
port_hints)>

Signature for the method that will be used to create a ROS 1 subscription to a certain topic, within the
subscriptions factory.

It allows to specify the associated ROS 1 node, the topic name and type, as well as the callback function
called every time a new message data arrives to this subscription.

This Factory method returns an opaque pointer containing the subscription object created by the In-
tegration Service to manage a subscription. This subscription object is dependent on every ROS
1 type and it is autogenerated in the template available in resources/convert__msg.cpp.em and re-
sources/convert__msg.hpp.em.

using RegisterPublisherToFactory = std::function<std::shared_ptr<TopicPublisher>(ros::NodeHandle
&node,
const
std::string
&topic_name,
uint32_t
queue_size,
bool
latch)>

Signature for the method that will be used to create a ROS 1 publisher to a certain topic, within the
publishers factory.

It allows to specify the associated ROS 1 node, the topic name to publish to, the queue size and en-
abling/disabling message latching.

This Factory method returns a pointer to an Integration Service TopicPublisher object, holding the created
ROS 1 publisher. This publisher object is dependent on every ROS 1 type and it is autogenerated in the
template available in resources/convert__msg.cpp.em and resources/convert__msg.hpp.em.

6.15. ROS 1 System Handle 93

https://github.com/eProsima/ROS1-SH/blob/main/ros1/resources/convert__msg.cpp.em
https://github.com/eProsima/ROS1-SH/blob/main/ros1/resources/convert__msg.hpp.em
https://github.com/eProsima/ROS1-SH/blob/main/ros1/resources/convert__msg.hpp.em
https://github.com/eProsima/ROS1-SH/blob/main/ros1/resources/convert__msg.cpp.em
https://github.com/eProsima/ROS1-SH/blob/main/ros1/resources/convert__msg.hpp.em

Integration Service Documentation, Release 3.1.0

using RegisterServiceClientToFactory = std::function<std::shared_ptr<ServiceClient>(ros::NodeHandle
&node,
const
std::string
&ser-
vice_name,
Ser-
vice-
ClientSys-
tem::RequestCallback
*call-
back)>

Signature for the method that will be used to create a ROS 1 service client to a certain service, within the
service clients factory.

It allows to specify the associated ROS 1 node, the service name, as well as the callback function called
every time a new request data arrives to this service client.

This Factory method returns a pointer containing the Integration Service ServiceClient object created by
the Integration Service to manage a service client. This service client object is dependent on every ROS 1
type and it is autogenerated in the template available in resources/convert__srv.cpp.em.

using RegisterServiceProviderToFactory = std::function<std::shared_ptr<ServiceProvider>(ros::NodeHandle
&node,
const
std::string
&ser-
vice_name)>

Signature for the method that will be used to create a ROS 1 service server to a certain service, within the
service servers factory.

It allows to specify the associated ROS 1 node and the service name.

This Factory method returns a pointer containing the Integration Service ServiceProvider object created
by the Integration Service to manage a service server. This service server object is dependent on every
ROS 1 type and it is autogenerated in the template available in resources/convert__srv.cpp.em.

Public Functions

void register_type_factory(const std::string &type_name, RegisterTypeToFactory regis-
ter_type_func)

Register a dynamic type within the types Factory.

Parameters

• [in] type_name: The type name, used as key in the Factory types map.

• [in] register_type_func: The function used to create the type.

xtypes::DynamicType::Ptr create_type(const std::string &type_name)
Create a dynamic type instance using the types registered previously in the Factory.

Return A pointer to the created type, or nullptr if the type was not registered in the Factory.

Parameters

• [in] type_name: The name of the type to be created.

94 Chapter 6. Contact and commercial support

https://github.com/eProsima/ROS1-SH/blob/main/ros1/resources/convert__srv.cpp.em
https://github.com/eProsima/ROS1-SH/blob/main/ros1/resources/convert__srv.cpp.em

Integration Service Documentation, Release 3.1.0

void register_subscription_factory(const std::string &topic_type, RegisterSubscrip-
tionToFactory register_sub_func)

Register a ROS 1 subscription builder within the Factory.

Parameters

• [in] topic_type: The name of the topic type, used to index the subscription factory map.

• [in] register_sub_func: The function used to create the subscription.

std::shared_ptr<void> create_subscription(const xtypes::DynamicType &topic_type,
ros::NodeHandle &node, const std::string
&topic_name, TopicSubscriberSys-
tem::SubscriptionCallback *callback, uint32_t
queue_size, const ros::TransportHints &trans-
port_hints)

Create a ROS 1 subscription handler for the Integration Service, using the subscriptions registered previ-
ously in the Factory.

Return An opaque pointer to the created Integration Service subscription entity.

Parameters

• [in] topic_type: A reference to the dynamic type representation of the topic type.

• [in] node: The ROS 1 node that will hold this subscription.

• [in] topic_name: The topic name to be subscribed to.

• [in] callback: The callback function called every time the ROS 1 subscription receives a
new data.

• [in] queue_size: The maximum message queue size for the ROS 1 subscription.

• [in] transport_hints: Provides the subscriber with specific transport information.

void register_publisher_factory(const std::string &topic_type, RegisterPublisherToFactory
register_pub_func)

Register a ROS 1 publisher builder within the Factory.

Parameters

• [in] topic_type: The name of the topic type, used to index the publisher factory map.

• [in] register_pub_func: The function used to create the publisher.

std::shared_ptr<TopicPublisher> create_publisher(const xtypes::DynamicType &topic_type,
ros::NodeHandle &node, const std::string
&topic_name, uint32_t queue_size, bool
latch)

Create a ROS 1 publisher handler for the Integration Service, using the publisher registered previously in
the Factory.

Return A pointer to the created Integration Service TopicPublisher entity.

Parameters

• [in] topic_type: A reference to the dynamic type representation of the topic type.

• [in] node: The ROS 1 node that will hold this publisher.

• [in] topic_name: The topic name to publish to.

6.15. ROS 1 System Handle 95

Integration Service Documentation, Release 3.1.0

• [in] queue_size: The maximum message queue size for the ROS 1 publisher.

• [in] latch: Enable/disable latching. When a connection is latched, the last message pub-
lished is saved and sent to any future subscribers that connect.

void register_client_proxy_factory(const std::string &service_response_type,
RegisterServiceClientToFactory regis-
ter_service_client_func)

Register a ROS 1 service client builder within the Factory.

Parameters

• [in] service_response_type: The name of the service response type, used as index in
the service client factory map.

• [in] register_service_client_func: The function used to create the service client.

std::shared_ptr<ServiceClient> create_client_proxy(const std::string &service_response_type,
ros::NodeHandle &node, const std::string
&service_name, ServiceClientSys-
tem::RequestCallback *callback)

Create a ROS 1 service client handler for the Integration Service, using the service client registered previ-
ously in the Factory.

Return A pointer to the created Integration Service ServiceClient entity.

Parameters

• [in] service_response_type: A reference to the dynamic type representation of the
service response type.

• [in] node: The ROS 1 node that will hold this service client.

• [in] service_name: The service name to forward petitions to.

• [in] callback: The callback function called every time the ROS 1 service client receives a
new request.

void register_server_proxy_factory(const std::string &service_request_type, RegisterSer-
viceProviderToFactory register_service_server_func)

Register a ROS 1 service server builder within the Factory.

Parameters

• [in] service_request_type: The name of the service server type to be registered.

• [in] register_service_server_func: The function used to create the service server.

std::shared_ptr<ServiceProvider> create_server_proxy(const std::string &ser-
vice_request_type, ros::NodeHandle
&node, const std::string &ser-
vice_name)

Create a ROS 1 service server handler for the Integration Service, using the service server registered
previously in the Factory.

Return A pointer to the created Integration Service ServiceProvider entity.

Parameters

• [in] service_request_type: A reference to the dynamic type representation of the ser-
vice request type.

96 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

• [in] node: The ROS 1 node that will hold this service server.

• [in] service_name: The name of the service.

Public Static Functions

Factory &instance()
Get a reference to the singleton instance of this Factory.

Return A mutable reference to the Factory singleton object instance.

class Implementation
Defines the actual implementation of the Factory class.

Allows to use the pimpl procedure to separate the implementation from the interface of Factory.

Methods named equal to some Factory method will not be documented again. Usually, the interface class
will call _pimpl->method(), but the functionality and parameters are exactly the same.

6.15.2 MetaPublisher

std::shared_ptr<is::TopicPublisher> eprosima::is::sh::ros1::make_meta_publisher(const
eprosima::xtypes::DynamicType
&mes-
sage_type,
ros::NodeHandle
&node,
const
std::string
&topic_name,
uint32_t
queue_size,
bool
latch,
const
YAML::Node
&con-
figura-
tion)

Produces a is::TopicPublisher that allows to use runtime substitution parameters in the YAML configuration file.

See is::core::StringTemplate

Return A pointer to the created Integration Service TopicPublisher entity.

Parameters

• [in] message_type: A reference to the dynamic type representation of the topic type.

• [in] node: The ROS 1 node that will hold this publisher.

• [in] topic_name: The topic name to publish to.

• [in] queue_size: The maximum message queue size for the ROS 1 publisher.

• [in] latch: Enable/disable latching. When a connection is latched, the last message published is
saved and sent to any future subscribers that connect.

6.15. ROS 1 System Handle 97

Integration Service Documentation, Release 3.1.0

• [in] configuration: The configuration specific for this SystemHandle, as described in the
user-provided YAML input file.

6.15.3 SystemHandle

class eprosima::is::sh::ros1::SystemHandle : public virtual eprosima::is::FullSystem
Implements all the interface defined for the Integration Service FullSystem, for the ROS 1 ecosystem.

Note This SystemHandle is currently prepared to support the latest LTS distribution of ROS 1, that is, Noetic
Ninjemys.

Public Functions

SystemHandle()
Construct a new SystemHandle object.

bool configure(const core::RequiredTypes &types, const YAML::Node &configuration, TypeReg-
istry &type_registry) override

Inherited from SystemHandle.

bool okay() const override
Inherited from SystemHandle.

bool spin_once() override
Inherited from SystemHandle.

~SystemHandle() override
Inherited from SystemHandle.

bool subscribe(const std::string &topic_name, const xtypes::DynamicType &message_type, Sub-
scriptionCallback *callback, const YAML::Node &configuration) override

Inherited from SystemHandle.

bool is_internal_message(void *filter_handle) override
Inherited from TopicSubscriberSystem.

std::shared_ptr<TopicPublisher> advertise(const std::string &topic_name, const
xtypes::DynamicType &message_type, const
YAML::Node &configuration) override

Inherited from SystemHandle.

bool create_client_proxy(const std::string &service_name, const xtypes::DynamicType
&service_type, RequestCallback *callback, const YAML::Node
&configuration) override

Inherited from SystemHandle.

bool create_client_proxy(const std::string &service_name, const xtypes::DynamicType&,
const xtypes::DynamicType &reply_type, RequestCallback *call-
back, const YAML::Node &configuration) override

Inherited from ServiceClientSystem.

std::shared_ptr<ServiceProvider> create_service_proxy(const std::string &service_name,
const xtypes::DynamicType &ser-
vice_type, const YAML::Node
&configuration) override

Inherited from SystemHandle.

98 Chapter 6. Contact and commercial support

http://wiki.ros.org/noetic
http://wiki.ros.org/noetic

Integration Service Documentation, Release 3.1.0

std::shared_ptr<ServiceProvider> create_service_proxy(const std::string &service_name,
const xtypes::DynamicType
&request_type, const
xtypes::DynamicType&, const
YAML::Node &configuration)
override

Inherited from ServiceProviderSystem.

6.16 ROS 2 System Handle

This section presents the API provided by the Integration Service is-ros2 library.

6.16.1 Factory

class eprosima::is::sh::ros2::Factory
This is a singleton class that allows to gain access to the specific publisher, subscriber, client and server conver-
sion functions, callbacks and other tasks, for each topic and service type.

Coming from the ROS 2 msg and srv files, the Integration Service rosidl plugin will generate the conversion
library files for each of them, after calling the ìs_ros2_rosidl_mix macro in the CMakeLists.txt file of
the ros2_mix_generator CMake project.

The generated conversion files will be compiled into a dynamic library that will be registered to a mix file,
using the is::core::MiddlewareInterfaceExtension API provided by the Integration Service Core. This ROS 2
conversion mix libraries will use this Factory class to register the conversion functions from/to ROS 2 types to
xTypes, as well as the subscription, publisher, service server and service client factories, that will be used later
to create the necessary links in the core to bridge ROS 2 with another middleware supported by the Integration
Service.

Public Types

using RegisterTypeToFactory = std::function<xtypes::DynamicType::Ptr()>
Signature for the method that will be used to register a dynamic type within the types factory.

using RegisterSubscriptionToFactory = std::function<std::shared_ptr<void>(rclcpp::Node
&node,
const
std::string
&topic_name,
const
xtypes::DynamicType
&mes-
sage_type,
TopicSub-
scriberSys-
tem::SubscriptionCallback
*callback,
const
rmw_qos_profile_t
&qos_profile)>

Signature for the method that will be used to create a ROS 2 subscription to a certain topic, within the
subscriptions factory.

6.16. ROS 2 System Handle 99

https://github.com/eProsima/ROS2-SH/blob/main/utils/ros2-mix-generator/CMakeLists.txt

Integration Service Documentation, Release 3.1.0

It allows to specify the associated ROS 2 node, the topic name and type, as well as the callback function
called every time a new message data arrives to this subscription.

This Factory method returns an opaque pointer containing the subscription object created by the In-
tegration Service to manage a subscription. This subscription object is dependent on every ROS
2 type and it is autogenerated in the template available in resources/convert__msg.cpp.em and re-
sources/convert__msg.hpp.em.

using RegisterPublisherToFactory = std::function<std::shared_ptr<TopicPublisher>(rclcpp::Node
&node,
const
std::string
&topic_name,
const
rmw_qos_profile_t
&qos_profile)>

Signature for the method that will be used to create a ROS 2 publisher to a certain topic, within the
publishers factory.

It allows to specify the associated ROS 2 node, the topic name to publish to, and the QoS profile for the
publisher.

This Factory method returns a pointer to an Integration Service TopicPublisher object, holding the created
ROS 2 publisher. This publisher object is dependent on every ROS 2 type and it is autogenerated in the
template available in resources/convert__msg.cpp.em and resources/convert__msg.hpp.em.

using RegisterServiceClientToFactory = std::function<std::shared_ptr<ServiceClient>(rclcpp::Node
&node,
const
std::string
&ser-
vice_name,
Ser-
vice-
ClientSys-
tem::RequestCallback
*call-
back,
const
rmw_qos_profile_t
&qos_profile)>

Signature for the method that will be used to create a ROS 2 service client to a certain service, within the
service clients factory.

It allows to specify the associated ROS 2 node, the service name, as well as the callback function called
every time a new request data arrives to this service client.

This Factory method returns a pointer containing the Integration Service ServiceClient object created by
the Integration Service to manage a service client. This service client object is dependent on every ROS 2
type and it is autogenerated in the template available in resources/convert__srv.cpp.em.

100 Chapter 6. Contact and commercial support

https://github.com/eProsima/ROS2-SH/blob/main/ros2/resources/convert__msg.cpp.em
https://github.com/eProsima/ROS2-SH/blob/main/ros2/resources/convert__msg.hpp.em
https://github.com/eProsima/ROS2-SH/blob/main/ros2/resources/convert__msg.hpp.em
https://github.com/eProsima/ROS2-SH/blob/main/ros2/resources/convert__msg.cpp.em
https://github.com/eProsima/ROS2-SH/blob/main/ros2/resources/convert__msg.hpp.em
https://github.com/eProsima/ROS2-SH/blob/main/ros2/resources/convert__srv.cpp.em

Integration Service Documentation, Release 3.1.0

using RegisterServiceProviderToFactory = std::function<std::shared_ptr<ServiceProvider>(rclcpp::Node
&node,
const
std::string
&ser-
vice_name,
const
rmw_qos_profile_t
&qos_profile)>

Signature for the method that will be used to create a ROS 2 service server to a certain service, within the
service servers factory.

It allows to specify the associated ROS 2 node and the service name.

This Factory method returns a pointer containing the Integration Service ServiceProvider object created
by the Integration Service to manage a service server. This service server object is dependent on every
ROS 2 type and it is autogenerated in the template available in resources/convert__srv.cpp.em.

Public Functions

void register_type_factory(const std::string &type_name, RegisterTypeToFactory regis-
ter_type_func)

Register a dynamic type within the types Factory.

Parameters

• [in] type_name: The type name, used as key in the Factory types map.

• [in] register_type_func: The function used to create the type.

xtypes::DynamicType::Ptr create_type(const std::string &type_name)
Create a dynamic type instance using the types registered previously in the Factory.

Return A pointer to the created type, or nullptr if the type was not registered in the Factory.

Parameters

• [in] type_name: The name of the type to be created.

void register_subscription_factory(const std::string &topic_type, RegisterSubscrip-
tionToFactory register_sub_func)

Register a ROS 2 subscription builder within the Factory.

Parameters

• [in] topic_type: The name of the topic type, used to index the subscription factory map.

• [in] register_sub_func: The function used to create the subscription.

std::shared_ptr<void> create_subscription(const xtypes::DynamicType &topic_type,
rclcpp::Node &node, const std::string
&topic_name, TopicSubscriberSys-
tem::SubscriptionCallback *callback, const
rmw_qos_profile_t &qos_profile)

Create a ROS 2 subscription handler for the Integration Service, using the subscriptions registered previ-
ously in the Factory.

Return An opaque pointer to the created Integration Service subscription entity.

6.16. ROS 2 System Handle 101

https://github.com/eProsima/ROS2-SH/blob/main/ros2/resources/convert__srv.cpp.em

Integration Service Documentation, Release 3.1.0

Parameters

• [in] topic_type: A reference to the dynamic type representation of the topic type.

• [in] node: The ROS 2 node that will hold this subscription.

• [in] topic_name: The topic name to be subscribed to.

• [in] callback: The callback function called every time the ROS 2 subscription receives a
new data.

• [in] qos_profile: The QoS used to create the subscription.

void register_publisher_factory(const std::string &topic_type, RegisterPublisherToFactory
register_pub_func)

Register a ROS 2 publisher builder within the Factory.

Parameters

• [in] topic_type: The name of the topic type, used to index the publisher factory map.

• [in] register_pub_func: The function used to create the publisher.

std::shared_ptr<TopicPublisher> create_publisher(const xtypes::DynamicType &topic_type,
rclcpp::Node &node, const std::string
&topic_name, const rmw_qos_profile_t
&qos_profile)

Create a ROS 2 publisher handler for the Integration Service, using the publisher registered previously in
the Factory.

Return A pointer to the created Integration Service TopicPublisher entity.

Parameters

• [in] topic_type: A reference to the dynamic type representation of the topic type.

• [in] node: The ROS 2 node that will hold this publisher.

• [in] topic_name: The topic name to publish to.

• [in] qos_profile: The QoS used to create the publisher.

void register_client_proxy_factory(const std::string &service_response_type,
RegisterServiceClientToFactory regis-
ter_service_client_func)

Register a ROS 2 service client builder within the Factory.

Parameters

• [in] service_response_type: The name of the service response type, used as index in
the service client factory map.

• [in] register_service_client_func: The function used to create the service client.

std::shared_ptr<ServiceClient> create_client_proxy(const std::string &service_response_type,
rclcpp::Node &node, const std::string
&service_name, ServiceClientSys-
tem::RequestCallback *callback, const
rmw_qos_profile_t &qos_profile)

Create a ROS 2 service client handler for the Integration Service, using the service client registered previ-
ously in the Factory.

102 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Return A pointer to the created Integration Service ServiceClient entity.

Parameters

• [in] service_response_type: A reference to the dynamic type representation of the
service response type.

• [in] node: The ROS 2 node that will hold this service client.

• [in] service_name: The service name to forward petitions to.

• [in] callback: The callback function called every time the ROS 2 service client receives a
new request.

• [in] qos_profile: The QoS used to create the service client.

void register_server_proxy_factory(const std::string &service_request_type, RegisterSer-
viceProviderToFactory register_service_server_func)

Register a ROS 2 service server builder within the Factory.

Parameters

• [in] service_request_type: The name of the service server type to be registered.

• [in] register_service_server_func: The function used to create the service server.

std::shared_ptr<ServiceProvider> create_server_proxy(const std::string &ser-
vice_request_type, rclcpp::Node
&node, const std::string &ser-
vice_name, const rmw_qos_profile_t
&qos_profile)

Create a ROS 2 service server handler for the Integration Service, using the service server registered
previously in the Factory.

Return A pointer to the created Integration Service ServiceProvider entity.

Parameters

• [in] service_request_type: A reference to the dynamic type representation of the ser-
vice request type.

• [in] node: The ROS 2 node that will hold this service server.

• [in] service_name: The service name to process petitions from.

• [in] qos_profile: The QoS used to create the service server.

Public Static Functions

Factory &instance()
Get a reference to the singleton instance of this Factory.

Return A mutable reference to the Factory singleton object instance.

class Implementation
Defines the actual implementation of the Factory class.

Allows to use the pimpl procedure to separate the implementation from the interface of Factory.

Methods named equal to some Factory method will not be documented again. Usually, the interface class
will call _pimpl->method(), but the functionality and parameters are exactly the same.

6.16. ROS 2 System Handle 103

Integration Service Documentation, Release 3.1.0

6.16.2 MetaPublisher

std::shared_ptr<is::TopicPublisher> eprosima::is::sh::ros2::make_meta_publisher(const
eprosima::xtypes::DynamicType
&mes-
sage_type,
rclcpp::Node
&node,
const
std::string
&topic_name,
const
rmw_qos_profile_t
&qos_profile,
const
YAML::Node
&con-
figura-
tion)

Produces a is::TopicPublisher that allows to use runtime substitution parameters in the YAML configuration file.

See is::core::StringTemplate

Return A pointer to the created Integration Service TopicPublisher entity.

Parameters

• [in] message_type: A reference to the dynamic type representation of the topic type.

• [in] node: The ROS 1 node that will hold this publisher.

• [in] topic_name: The topic name to publish to.

• [in] qos_profile: The QoS used to create the publisher.

• [in] configuration: The configuration specific for this SystemHandle, as described in the
user-provided YAML input file.

6.16.3 System Handle

class eprosima::is::sh::ros2::SystemHandle : public virtual eprosima::is::FullSystem
Implements all the interface defined for the Integration Service FullSystem, for the ROS 2 ecosystem.

Some changes might be needed to support ROS 2 Galactic, the forthcoming version of ROS 2. This will be
mainly related to the use of the new API for setting the DOMAIN ID within every ROS 2 node, instead of using
the ROS_DOMAIN_ID environment variable.

Note This SystemHandle is currently prepared to support the latests distributions of ROS 2, that is, Foxy Fitzroy
and Galactic Geochelone.

104 Chapter 6. Contact and commercial support

https://docs.ros.org/en/foxy/Releases/Release-Foxy-Fitzroy.html
https://docs.ros.org/en/galactic/Releases/Release-Galactic-Geochelone.html

Integration Service Documentation, Release 3.1.0

Public Functions

SystemHandle()
Construct a new SystemHandle object.

bool configure(const core::RequiredTypes &types, const YAML::Node &configuration, TypeReg-
istry &type_registry) override

Inherited from SystemHandle.

bool okay() const override
Inherited from SystemHandle.

bool spin_once() override
Inherited from SystemHandle.

~SystemHandle() override
Inherited from SystemHandle.

bool subscribe(const std::string &topic_name, const xtypes::DynamicType &message_type, Sub-
scriptionCallback *callback, const YAML::Node &configuration) override

Inherited from TopicSubscriberSystem.

bool is_internal_message(void *filter_handle) override
Inherited from TopicSubscriberSystem.

std::shared_ptr<TopicPublisher> advertise(const std::string &topic_name, const
xtypes::DynamicType &message_type, const
YAML::Node &configuration) override

Inherited from TopicPublisherSystem.

bool create_client_proxy(const std::string &service_name, const xtypes::DynamicType
&service_type, RequestCallback *callback, const YAML::Node
&configuration) override

Inherited from ServiceClientSystem.

bool create_client_proxy(const std::string &service_name, const xtypes::DynamicType&,
const xtypes::DynamicType &reply_type, RequestCallback *call-
back, const YAML::Node &configuration) override

Inherited from ServiceClientSystem.

std::shared_ptr<ServiceProvider> create_service_proxy(const std::string &service_name,
const xtypes::DynamicType &ser-
vice_type, const YAML::Node
&configuration) override

Inherited from ServiceProviderSystem.

std::shared_ptr<ServiceProvider> create_service_proxy(const std::string &service_name,
const xtypes::DynamicType
&request_type, const
xtypes::DynamicType&, const
YAML::Node &configuration)
override

Inherited from ServiceProviderSystem.

6.16. ROS 2 System Handle 105

Integration Service Documentation, Release 3.1.0

6.17 WebSocket System Handle

This section presents the API provided by the Integration Service is-websocket library.

6.17.1 Encoding

class eprosima::is::sh::websocket::Encoding
This interface class defines all the methods that must be implemented in order to create an encoding to be used
to construct and interpret raw WebSocket messages.

eprosima::is::sh::websocket::JsonEncoding: Encoding implementation for message exchanging using JSON
format.

Subclassed by eprosima::is::sh::websocket::JsonEncoding

Public Functions

void interpret_websocket_msg(const std::string &msg, Endpoint &endpoint,
std::shared_ptr<void> connection_handle) const = 0

Interpret an incoming WebSocket message.

Parameters

• [in] msg: The message to be interpreted.

• [in] endpoint: The target endpoint which will perform the actions specified by the message.

• [in] connection_handle: Opaque pointer which identifies the current connection.

std::string encode_publication_msg(const std::string &topic_name, const std::string
&topic_type, const std::string &id, const
xtypes::DynamicData &msg) const = 0

Encode a publish message.

Return A string representation of the encoded publication message, ready to be sent using WebSocket.

Parameters

• [in] topic_name: The name of the topic where the message will be published to.

• [in] topic_type: The type name of the topic where the message will be published to.

• [in] id: The publisher ID.

• [in] msg: The message data to be published. This will be transformed to JSON format before-
hand.

std::string encode_service_response_msg(const std::string &service_name, const
std::string &service_type, const std::string
&id, const xtypes::DynamicData &response, bool
result) const = 0

Encode a service response message.

Return A string representation of the encoded service response message, ready to be sent using Web-
Socket.

Parameters

106 Chapter 6. Contact and commercial support

https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf

Integration Service Documentation, Release 3.1.0

• [in] service_name: The name of the service which is answering.

• [in] service_type: The type name of the service reply.

• [in] id: The service ID.

• [in] response: The message data containing the service response. This will be transformed
to JSON format beforehand.

• [in] result: Indicates if the response was received or not from the service server.

std::string encode_subscribe_msg(const std::string &topic_name, const std::string &mes-
sage_type, const std::string &id, constYAML::Node &con-
figuration) const = 0

Encode a subscription message.

Return A string representation of the encoded subscription message, ready to be sent using WebSocket.

Parameters

• [in] topic_name: The name of the topic to which the subscription will be performed.

• [in] message_type: The type name of the topic to which the subscription will be per-
formed.

• [in] id: The subscriber ID.

• [in] configuration: Additional configuration that might be required for the subscription
operation.

std::string encode_advertise_msg(const std::string &topic_name, const std::string &mes-
sage_type, const std::string &id, constYAML::Node &con-
figuration) const = 0

Encode an advertisement message. This step is required prior to publish operation.

Return A string representation of the encoded advertise message, ready to be sent using WebSocket.

Parameters

• [in] topic_name: The name of the topic to which the advertisement will be performed.

• [in] message_type: The type name of the topic to which the advertisement will be per-
formed.

• [in] id: The publisher ID.

• [in] configuration: Additional configuration that might be required for the advertise op-
eration.

std::string encode_call_service_msg(const std::string &service_name, const std::string
&service_type, const xtypes::DynamicData &ser-
vice_request, const std::string &id, constYAML::Node
&configuration) const = 0

Encode a call service message.

Return A string representation of the encoded call service message, ready to be sent using WebSocket.

Parameters

• [in] service_name: The name of service to be called.

• [in] service_type: The type name of the service to be called.

6.17. WebSocket System Handle 107

Integration Service Documentation, Release 3.1.0

• [in] service_request: The data of the request message. This will be transformed to
JSON format beforehand.

• [in] id: The service ID.

• [in] configuration: Additional configuration that might be required for the call service
operation.

std::string encode_advertise_service_msg(const std::string &service_name, const
std::string &request_type, const std::string
&reply_type, const std::string &id, const
YAML::Node &configuration) const = 0

Encode an advertise service message. This step is required prior to service call operations.

Return A string representation of the encoded service advertise message, ready to be sent using Web-
Socket.

Parameters

• [in] service_name: The name of the service to which the advertisement will be performed.

• [in] request_type: The request type name of the service to which the advertisement will
be performed.

• [in] reply_type: The reply type name of the service to which the advertisement will be
performed.

• [in] id: The service ID.

• [in] configuration: Additional configuration that might be required for the advertise op-
eration.

bool add_type(const xtypes::DynamicType &type, const std::string &type_name = "")
Add a type to the types database.

Return true if the type was correctly added, or false otherwise.

Parameters

• [in] type: The dynamic type to be added.

• [in] type_name: The type name.

6.17.2 Endpoint

class eprosima::is::sh::websocket::Endpoint : public eprosima::is::FullSystem, public eprosima::is::ServiceClient
Represents a WebSocket endpoint for the Integration Service. The Endpoint class will be later specialized for
client and server applications.

Subclassed by eprosima::is::sh::websocket::Client, eprosima::is::sh::websocket::Server

108 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Public Functions

Endpoint(const std::string &name)
Constructor.

Parameters

• name: The name given to this Endpoint instance. It will be used to identify logging traces.

bool configure(const core::RequiredTypes &types, const YAML::Node &configuration, TypeReg-
istry &type_registry) override

Inherited from SystemHandle.

bool okay() const = 0
Inherited from SystemHandle.

bool spin_once() = 0
Inherited from SystemHandle.

~Endpoint() = default
Destructor.

bool subscribe(const std::string &topic_name, const xtypes::DynamicType &message_type, Top-
icSubscriberSystem::SubscriptionCallback *callback, const YAML::Node &config-
uration) final override

Inherited from TopicSubscriberSystem.

bool is_internal_message(void *filter_handle) final override
Inherited from TopicSubscriberSystem.

std::shared_ptr<TopicPublisher> advertise(const std::string &topic_name, const
xtypes::DynamicType &message_type, const
YAML::Node &configuration) final override

Inherited from TopicPublisherSystem.

bool create_client_proxy(const std::string &service_name, const xtypes::DynamicType
&service_type, ServiceClientSystem::RequestCallback *callback,
const YAML::Node &configuration) final override

Inherited from ServiceClientSystem.

bool create_client_proxy(const std::string &service_name, const xtypes::DynamicType
&request_type, const xtypes::DynamicType &reply_type, Ser-
viceClientSystem::RequestCallback *callback, const YAML::Node
&configuration) final override

Inherited from ServiceClientSystem.

std::shared_ptr<ServiceProvider> create_service_proxy(const std::string &service_name,
const xtypes::DynamicType &ser-
vice_type, const YAML::Node
&configuration) final override

Inherited from ServiceProviderSystem.

std::shared_ptr<ServiceProvider> create_service_proxy(const std::string &service_name,
const xtypes::DynamicType
&request_type, const
xtypes::DynamicType &reply_type,
const YAML::Node &configuration)
final override

Inherited from ServiceProviderSystem.

6.17. WebSocket System Handle 109

Integration Service Documentation, Release 3.1.0

void startup_advertisement(const std::string &topic, const xtypes::DynamicType &mes-
sage_type, const std::string &id, const YAML::Node &configu-
ration)

Send out an advertisement the next time a connection is made.

Parameters

• [in] topic: The topic name.

• [in] message_type: The Dynamic Type message representation.

• [in] id: The publisher ID.

• [in] configuration: Additional configuration, in YAML format, required to advertise the
topic.

void runtime_advertisement(const std::string &topic, const xtypes::DynamicType &mes-
sage_type, const std::string &id, const YAML::Node &configu-
ration) = 0

Send out an advertisement to all existing connections right away. This is for publication topics that are
determined at runtime by topic templates.

Parameters

• [in] topic: The topic name.

• [in] message_type: The Dynamic Type message representation.

• [in] id: The message ID.

• [in] configuration: Additional configuration, in YAML format, required to advertise the
topic.

bool publish(const std::string &topic, const xtypes::DynamicData &message)
Publish a message to a certain topic.

See is::TopicPublisher.

Return true if the publication was made, false otherwise.

Parameters

• [in] topic: The topic name to publish to.

• [in] message: The message data instance to be published.

void call_service(const std::string &service, const xtypes::DynamicData &request, Service-
Client &client, std::shared_ptr<void> call_handle)

Call a service.

See is::ServiceProvider.

Parameters

• [in] service: The name of the service to be called.

• [in] request: Request message for the service.

• [inout] client: The proxy for the client that is making the request.

• [in] call_handle: A handle for the call.

110 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

void receive_response(std::shared_ptr<void> call_handle, const xtypes::DynamicData &re-
sponse) final override

Inherited from ServiceClient.

void receive_topic_advertisement_ws(const std::string &topic_name, const
xtypes::DynamicType &message_type, const
std::string &id, std::shared_ptr<void> connec-
tion_handle)

Process an advertisement message. This step is required prior to publish operation.

Parameters

• [in] topic_name: The name of the topic to be advertised.

• [in] message_type: The type name of the topic to be advertised.

• [in] id: The publisher ID.

• [in] connection_handle: Opaque pointer which identifies the current connection.

void receive_topic_unadvertisement_ws(const std::string &topic_name, const
std::string &id, std::shared_ptr<void> connec-
tion_handle)

Process an unadvertisement message.

Parameters

• [in] topic_name: The name of the topic to be unadvertised.

• [in] id: The publisher ID.

• [in] connection_handle: Opaque pointer which identifies the current connection.

void receive_publication_ws(const std::string &topic_name, const xtypes::DynamicData
&message, std::shared_ptr<void> connection_handle)

Process an publication.

Parameters

• [in] topic_name: The name of the topic where the message will be published to.

• [in] message: The message published.

• [in] connection_handle: Opaque pointer which identifies the current connection.

void receive_subscribe_request_ws(const std::string &topic_name, const
xtypes::DynamicType *message_type, const std::string
&id, std::shared_ptr<void> connection_handle)

Process a request for subscribing to a certain topic.

Parameters

• [in] topic_name: The name of the topic where the subscription will be performed to.

• [in] message_type: The dynamic type of the topic to get subscribed to.

• [in] id: The identifier of the message.

• [in] connection_handle: Opaque pointer which identifies the current connection.

void receive_unsubscribe_request_ws(const std::string &topic_name, const std::string
&id, std::shared_ptr<void> connection_handle)

Process a request for unsubscribing to a certain topic.

6.17. WebSocket System Handle 111

Integration Service Documentation, Release 3.1.0

Parameters

• [in] topic_name: The name of the topic where the subscription will be stopped.

• [in] id: The identifier of the message.

• [in] connection_handle: Opaque pointer which identifies the current connection.

void receive_service_request_ws(const std::string &service_name, const
xtypes::DynamicData &request, const std::string &id,
std::shared_ptr<void> connection_handle)

Process a service request.

Parameters

• [in] service_name: The name of the service.

• [in] request: The request data.

• [in] id: The service ID.

• [in] connection_handle: Opaque pointer which identifies the current connection.

void receive_service_advertisement_ws(const std::string &service_name,
const xtypes::DynamicType &req_type,
const xtypes::DynamicType &reply_type,
std::shared_ptr<void> connection_handle)

Process a service advertisement. This is required prior to calling a service.

Parameters

• [in] service_name: The name of the service.

• [in] req_type: The request data type.

• [in] reply_type: The reply data type.

• [in] connection_handle: Opaque pointer which identifies the current connection.

void receive_service_unadvertisement_ws(const std::string &service_name, const
xtypes::DynamicType *service_type,
std::shared_ptr<void> connection_handle)

Process a service unadvertisement. The service will no longer be available.

Parameters

• [in] service_name: The name of the service.

• [in] service_type: The service type. Usually refers to the request type.

• [in] connection_handle: Opaque pointer which identifies the current connection.

void receive_service_response_ws(const std::string &service_name, const
xtypes::DynamicData &response, const std::string
&id, std::shared_ptr<void> connection_handle)

Process a service response.

Parameters

• [in] service_name: The name of the service.

• [in] response: The response data.

112 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

• [in] id: The service ID.

• [in] connection_handle: Opaque pointer which identifies the current connection.

6.17.3 Client

class Client : public eprosima::is::sh::websocket::Endpoint
This class represents a WebSocket Client, which can be defined as an application that sends requests to a specific
port and waits for the Server response.

It implements some of the Endpoint class methods.

6.17.4 Server

class Server : public eprosima::is::sh::websocket::Endpoint
This class represents a WebSocket Server, which can be defined as an application that listens to a specific port
waiting for Client’s requests.

It implements some of the Endpoint class methods.

6.17.5 JWTValidator

class eprosima::is::sh::websocket::JwtValidator
Class that validates the received JSON Web Token according to the VerificationPolicy specified on the configu-
ration file.

Public Functions

void verify(const std::string &token)
Verifies the token.

Parameters

• [in] token: String containing the JSON Web Token.

Exceptions

• VerificationError:

void add_verification_policy(const VerificationPolicy &policy)
Adds a policy to resolve the verification strategy to use.

The VerificationPolicy should set the VerificationStrategy and returns true if it is able to provide a strategy.
If there are multiple policies that can process a token, the 1st policy that matches is used. VerificationPol-
icyFactory contains some simple predefined policies.

Remark The idea is that JwtValidator should support verifying in multiple use cases. For example, choos-
ing a secret based on the issuer or other claims and any custom strategy as required. There is no way to
open up such flexibility from within the class so the conclusion is to have a handler that the consumer
supplies to choose the verification method.

Parameters

• [in] policy: The policy to be added.

6.17. WebSocket System Handle 113

https://jwt.io/

Integration Service Documentation, Release 3.1.0

class eprosima::is::sh::websocket::VerificationPolicy
Class containing all the relevant information about the verification policy, which includes the public key or the
secret key used for generating the token.

Public Types

using Rule = std::pair<std::string, std::string>
Rule signature.

Public Functions

VerificationPolicy(std::vector<Rule> rules, std::vector<Rule> header_rules, std::string se-
cret_or_pubkey)

Constructor.

const std::string &secret_or_pubkey() const
Retrieves the public key or secret.

class ServerConfig
Loads from the YAML configuration file the authentication policy that will be used by the JwtValidator.

6.18 Different Protocols

This page gathers all the existing examples for Integration Service that connect different protocols which handle
incompatible types.

6.18.1 Publisher - Subscriber

This page gathers all the Integration Service existing examples based on the publisher - subscriber paradigm that
connect different protocols which handle incompatible types.

DDS - ROS 2 bridge

In this example we address a very common situation faced in the robotics world: that of bridging DDS and ROS 2.
Specifically, we discuss how to do so with the Fast DDS implementation.

A user with knowledge of both systems may be aware that ROS 2 uses DDS as a middleware but hides some of DDS’
configuration details, thus making a direct communication between the two problematic. By using Integration Service,
this task can be eased, and achieved with minimal effort from the user’s side.

The steps described below address such a situation, by putting into communication a ROS 2 talker-listener
example with a Fast DDS DDSHelloWorld example.

114 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having ROS 2 (Foxy or superior) installed, with the talker-listener example working.

• Having the ROS 2 System Handle installed. You can download it from the ROS2-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH src/ros2-sh

• Having Fast DDS (v.2.0.0 or superior) installed and the Integration Service DDSHelloWorld exam-
ple working. This example can be found in the main Integration Service repository, under the exam-
ples/utils/dds/DDSHelloWorld folder; to compile it, you can either compile the whole Integration Service project
using colcon with the CMake flag BUILD_EXAMPLES enabled; or execute the following steps:

cd ~/is-workspace/src/Integration-Service/examples/utils/dds/DDSHelloWorld
mkdir build && cd build
cmake .. -DBUILD_EXAMPLES=ON && make

• Having the Fast DDS System Handle installed. You can download it from the FastDDS-SH dedicated reposi-
tory into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/FastDDS-SH.git src/FastDDS-SH

6.18. Different Protocols 115

https://github.com/eProsima/ROS2-SH
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSHelloWorld
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSHelloWorld
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/FastDDS-SH

Integration Service Documentation, Release 3.1.0

After you have everything correctly installed in your is-workspace, build the packages by running:

colcon build --cmake-args -DBUILD_FASTDDS_EXAMPLES=ON

Deployment

Below we explain how to deploy an example of this communication in both directions allowed.

ROS 2 talker to DDS subscriber

To enable communication from ROS 2 to Fast DDS, open three terminals:

• In the first terminal, source your ROS 2 installation and execute a ROS 2 talker:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 run demo_nodes_cpp talker

• In the second terminal, execute a Fast DDS HelloWorld subscriber from within the is-workspace:

cd ~/is-workspace
source install/setup.bash
./build/is-examples/dds/DDSHelloWorld/DDSHelloWorld -m subscriber

At this point, the two applications cannot communicate due to the incompatibility of their topics and types. This is
where Integration Service comes into play to make the communication possible.

• In the third terminal, go to the is-workspace folder, source the ROS 2 and local installations,
and execute Integration Service with the integration-service command followed by the fast-
dds_ros2__helloworld.yaml configuration file located in the src/Integration-Service/examples/
basic folder:

cd ~/is-workspace
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/fastdds_ros2__
→˓helloworld.yaml

Once the last command is executed, the two applications will start communicating.

DDS publisher to ROS 2 listener

To enable communication from Fast DDS to ROS 2, open three terminals:

• In the first terminal, execute a Fast DDS HelloWorld publisher from within the is-workspace:

cd ~/is-workspace
source install/setup.bash
./build/is-examples/dds/DDSHelloWorld/DDSHelloWorld -m publisher

• In the second terminal, source your ROS 2 installation and execute a ROS 2 listener:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 run demo_nodes_cpp listener

116 Chapter 6. Contact and commercial support

https://github.com/eProsima/Integration-Service/blob/main/examples/basic/fastdds_ros2__helloworld.yaml
https://github.com/eProsima/Integration-Service/blob/main/examples/basic/fastdds_ros2__helloworld.yaml

Integration Service Documentation, Release 3.1.0

At this point, the two applications cannot communicate due to the incompatibility of their topics and types. This is
where Integration Service comes into play to make the communication possible.

• In the third terminal, go to the is-workspace folder, source the ROS 2 and local installations,
and execute Integration Service with the integration-service command followed by the fast-
dds_ros2__helloworld.yaml configuration file located in the src/Integration-Service/examples/
basic folder:

cd ~/is-workspace
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/fastdds_ros2__
→˓helloworld.yaml

Once the last command is executed, the two applications will start communicating.

FIWARE - ROS 2 bridge

An interesting use case is the one of bringing information coming from the ROS 2 world into the FIWARE ecosystem,
so that it can be used to translate information coming from physically operated ROS 2 robots into its FIWARE’s digital
twin models.

The steps described below aim to provide an easy way to translate the information coming from a ROS 2 publisher
into the FIWARE’s Orion Context Broker; and viceversa.

6.18. Different Protocols 117

https://github.com/eProsima/Integration-Service/blob/main/examples/basic/fastdds_ros2__helloworld.yaml
https://github.com/eProsima/Integration-Service/blob/main/examples/basic/fastdds_ros2__helloworld.yaml

Integration Service Documentation, Release 3.1.0

Requirements

To prepare the deployment and setup the environment, you need to have eProsima Integration Service correctly in-
stalled in your system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having ROS 2 (Foxy or superior) installed, with the talker-listener example working.

• Having the ROS 2 System Handle installed. You can download it from the ROS2-SH dedicated repository into
the is-workspace where you have eProsima Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH

• Having a FIWARE’s Context Broker correctly set up. To do so: * Set up a MongoDB database image:

docker run --rm --name mongodb -d mongo:3.4

– Create a container for the FIWARE’s Orion Context Broker, linked to the previously created MongoDB
docker:

docker run --rm -d --name orion1 --link mongodb:mongodb -p 1026:1026 fiware/
→˓orion -dbhost mongodb

It is very important to retrieve the fiware/orion docker container IP, because it will be later placed in the
Integration Service YAML configuration file. To do so, simply check the output of the following command:

ifconfig docker0 | grep “inet “

• Having the FIWARE System Handle installed. You can download it from the FIWARE-SH dedicated reposi-
tory into the is-workspace where you have eProsima Integration Service installed:

cd ~/dds-is-workspace
git clone https://github.com/eProsima/FIWARE-SH.git src/FIWARE-SH

After you have everything correctly installed, build the packages by running:

colcon build

Deployment

Below we explain how to deploy an example of this communication in both directions allowed.

ROS 2 pub to FIWARE

To enable communication from ROS 2 to FIWARE, open three terminals:

• In the first terminal, go to the is-workspace folder, source the ROS 2 and local installations,
and execute eProsima Integration Service with the integration-service command followed by
the ros2_fiware__helloworld.yaml configuration file located in the src/Integration-Service/
examples/basic folder.

118 Chapter 6. Contact and commercial support

https://github.com/eProsima/ROS2-SH
https://github.com/eProsima/FIWARE-SH
https://github.com/eProsima/FIWARE-SH
https://github.com/eProsima/Integration-Service/blob/main/examples/basic/ros2_fiware__helloworld.yaml

Integration Service Documentation, Release 3.1.0

Important: Please notice that the YAML may have a different IP address for the host file that the one you
retrieved from your docker container bridge, if so, replace it properly. From now on, in this example, the host
will be located at IP address 172.17.0.1:

cd ~/is-workspace
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/ros2_fiware__
→˓helloworld.yaml

• In the second terminal, create the corresponding entities in the FIWARE’s Context Broker:

curl 172.17.0.1:1026/v2/entities -s -S -H 'Content-Type: application/json' -d @* <
→˓<EOF
{
"id": "hello_fiware",
"type": "HelloWorld",
"data": {

"value": "",
"type": "String"

}
}
EOF

Now, in your browser, go to http://172.17.0.1:1026/v2/entities. You should see the context broker entity named
hello_fiware previously created.

• In the third terminal, source the ROS 2 installation and launch the ROS 2 pub:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 topic pub /hello_fiware std_msgs/msg/String “{data: Hello FIWARE}”

Now, if you press F5 in the browser, you should see that the entity has been correctly updated.

FIWARE to ROS 2 echo

To enable communication from FIWARE to ROS 2, open three terminals:

• In the first terminal, go to the is-workspace folder, source the ROS 2 and local installations,
and execute eProsima Integration Service with the integration-service command followed by
the ros2_fiware__helloworld.yaml configuration file located in the src/Integration-Service/
examples/basic folder.

Important: Please notice that the YAML may have a different IP address for the host file that the one you
retrieved from your docker container bridge, if so, replace it properly. From now on, in this example, the host
will be located at IP address 172.17.0.1:

cd ~/is-workspace
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/ros2_fiware__
→˓helloworld.yaml

6.18. Different Protocols 119

http://172.17.0.1:1026/v2/entities
https://github.com/eProsima/Integration-Service/blob/main/examples/basic/ros2_fiware__helloworld.yaml

Integration Service Documentation, Release 3.1.0

• In the second terminal, create the corresponding entities in the FIWARE’s Context Broker:

curl 172.17.0.1:1026/v2/entities -s -S -H 'Content-Type: application/json' -d @- <
→˓<EOF
{
"id": "hello_ros2",
"type": "HelloWorld",
"data": {

"value": "",
"type": "String"

}
}
EOF

Now, in your browser, go to http://172.17.0.1:1026/v2/entities. You should see the context broker entity named
hello_fiware previously created.

• In the third terminal, source the ROS 2 installation and launch the ROS 2 echo:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 topic echo /hello_ros2

• Again in the second terminal, update the FIWARE entity hosted in the Context Broker:

curl 172.17.0.1:1026/v2/entities/hello_ros2/attrs?type=HelloWorld -s -S -H
→˓'Content-Type: application/json' -X PUT -d @- <<EOF
{
"data": {

"value": "Hello, ROS 2",
"type": "String"

}
}
EOF

You should see the message echoed in the ROS 2 terminal.

ROS 1 - ROS 2 bridge

Another typical situation of systems using different protocols is that of ROS 1 and ROS 2.

By using Integration Service, this communication can be achieved with minimum user’s effort. As both a ROS 1
System Handle and a ROS 2 System Handle already exist, the communication is straightforward.

In the example below, we show how Integration Service puts into communication two pub-echo examples, one from
ROS 2, and the other from ROS 1.

120 Chapter 6. Contact and commercial support

http://172.17.0.1:1026/v2/entities

Integration Service Documentation, Release 3.1.0

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having ROS 2 (Foxy or superior) installed, with the talker-listener example working.

• Having the ROS 2 System Handle installed. You can download it from the ROS2-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH

• Having ROS 1 (Melodic or superior) installed, with the pub-echo example working.

• Having the ROS 1 System Handle installed. You can download it from the ROS1-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/dds-is-workspace
git clone https://github.com/eProsima/ROS1-SH.git src/ROS1-SH

After you have everything correctly installed, build the packages by running:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
colcon build --packages-skip-regex is-ros1
source /opt/ros/$<ROS1_DISTRO>/setup.bash
colcon build

6.18. Different Protocols 121

https://github.com/eProsima/ROS2-SH
https://github.com/eProsima/ROS1-SH

Integration Service Documentation, Release 3.1.0

Deployment

Below we explain how to deploy an example of this communication in both directions allowed.

ROS 1 pub to ROS 2 echo

To enable communication from ROS 1 to ROS 2, open four terminals:

• In the first terminal, source the ROS 1 installation and run the roscore:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
roscore

• In the second terminal, source the ROS 1 installation and launch the ROS 1 pub:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
rostopic pub -r 1 /hello_ros2 std_msgs/String "Hello, ros2"

• In the third terminal, source the ROS 2 installation and launch the ROS 2 echo:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 topic echo /hello_ros2 std_msgs/String

• In the fourth terminal, go to the is-workspace folder, source the ROS 2, the ROS 1, and local in-
stallations, and execute Integration Service with the integration-service command followed by the
ros1_ros2__helloworld.yaml configuration file located in the src/Integration-Service/examples/
basic folder:

cd ~/is-workspace
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source /opt/ros/$<ROS1_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/ros1_ros2__helloworld.
→˓yaml

Once Integration Service is launched, the ROS 1 pub and the ROS 2 echo will start communicating.

ROS 2 pub to ROS 1 echo

To enable communication from ROS 2 to ROS 1, open four terminals:

• In the first terminal, source the ROS 1 installation and run the roscore:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
roscore

• In the second terminal, source the ROS 2 installation and launch the ROS 2 pub:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 topic pub -r 1 /hello_ros1 std_msgs/String "{data: \"Hello, ros1\"}"

• In the third terminal, source the ROS 1 installation and launch the ROS 1 echo:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
rostopic echo /hello_ros1

122 Chapter 6. Contact and commercial support

https://github.com/eProsima/Integration-Service/blob/main/examples/basic/ros1_ros2__helloworld.yaml

Integration Service Documentation, Release 3.1.0

• In the fourth terminal, go to the is-workspace folder, source the ROS 2, the ROS 1, and local in-
stallations, and execute Integration Service with the integration-service command followed by the
ros1_ros2__helloworld.yaml configuration file located in the src/Integration-Service/examples/
basic folder:

cd ~/is-workspace
source /opt/ros/$<ROS1_DISTRO>/setup.bash
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/ros1_ros2__helloworld.
→˓yaml

Once Integration Service is launched, the ROS 2 pub and the ROS 1 echo will start communicating.

ROS 2 - WebSocket bridge

Another relevant use-case for Integration Service is that of connecting a WebSocket and a ROS 2 application

The examples detailed below addresses the situation of a ROS 2 talker-listener example communicating with
a WebSocket client.

6.18. Different Protocols 123

https://github.com/eProsima/Integration-Service/blob/main/examples/basic/ros1_ros2__helloworld.yaml

Integration Service Documentation, Release 3.1.0

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having ROS 2 (Foxy or superior) installed, with the talker-listener example working.

• Having the ROS 2 System Handle installed. You can download it from the ROS2-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH

• Having OpenSSL and WebSocket++ installed:

apt install libssl-dev libwebsocketpp-dev

• Having the WebSocket System Handle installed. You can download it from the WebSocket-SH dedicated
repository into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/WebSocket-SH.git src/WebSocket-SH

After you have everything correctly installed in your is-workspace, build the packages by running:

colcon build

Deployment

Below we explain how to deploy an example of this communication in both directions allowed.

ROS 2 pub to WebSocket client

To enable communication from ROS 2 to a WebSocket client, open two terminals:

• In the first terminal, source your ROS 2 installation and execute a ROS 2 pub:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 topic pub /hello_websocket std_msgs/msg/String “{data: Hello WebSocket}”

• In the second terminal, go to the is-workspace folder, source the ROS 2 and local installa-
tions, and execute Integration Service with the integration-service command followed by the
ros2_websocket__helloworld.yaml configuration file located in the src/Integration-Service/basic
folder:

cd ~/is-workspace
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/ros2_websocket__
→˓helloworld.yaml

Up to this point, the Integration Service should have created a WebSocket server application within the WebSocket
System Handle, to listen and handle petitions coming from a WebSocket client.

124 Chapter 6. Contact and commercial support

https://github.com/eProsima/ROS2-SH
https://www.openssl.org/
https://github.com/zaphoyd/websocketpp
https://github.com/eProsima/WebSocket-SH
https://github.com/eProsima/WebSocket-SH
https://github.com/eProsima/Integration-Service/blob/main/examples/basic/ros2_websocket__helloworld.yaml

Integration Service Documentation, Release 3.1.0

We will now explain how to simply test the intercommunication between ROS 2 and a demo WebSocket client appli-
cation, which can be found in websocket.org/echo webpage:

• First, under the Location section, connect to the WebSocket server automatically deployed by the Integration
Service. To do so, and since the example is being run without SSL security, copy and paste the following URL
into the Location field text box, and press Connect:

ws://localhost:80

After this, you should see two WebSocket messages received automatically, due to the fact that the WebSocket
Server hosted in the Integration Service detected an incoming connection: a subscribe operation message for
the hello_ros2 topic; and an advertise operation for the hello_websocket topic.

• Since the ROS 2 talker to WebSocket client example is being tested, we must first send a subscribe operation
request for the hello_websocket topic. To do so, under the Message text box, enter the following and press
Send:

{"op": "subscribe", "topic": "hello_websocket", "type": "std_msgs/String"}

After this, in the Log you should receive the following message from ROS 2:

RECEIVED: {"msg":{"data":"Hello WebSocket"},"op":"publish","topic":"hello_websocket"}

WebSocket client to ROS 2 echo

To enable communication from a WebSocket client to ROS 2, open two terminals:

• In the first terminal, source your ROS 2 installation and execute a ROS 2 echo:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 topic echo /hello_ros2 std_msgs/msg/String

• In the second terminal, go to the is-workspace folder, source the ROS 2 and local installa-
tions, and execute Integration Service with the integration-service command followed by the
ros2_websocket__helloworld.yaml configuration file located in the src/Integration-Service/basic
folder:

cd ~/is-workspace
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/ros2_websocket__
→˓helloworld.yaml

Up to this point, the Integration Service should have created a WebSocket server application within the WebSocket
System Handle, to listen and handle petitions coming from a WebSocket client.

We will now explain how to simply test the intercommunication between ROS 2 and a demo WebSocket client appli-
cation, which can be found in websocket.org/echo webpage:

• First, under the Location section, connect to the WebSocket server automatically deployed by the Integration
Service. To do so, and since the example is being run without SSL security, copy and paste the following URL
into the Location field text box, and press Connect:

ws://localhost:80

6.18. Different Protocols 125

https://www.websocket.org/echo.html
https://github.com/eProsima/Integration-Service/blob/main/examples/basic/ros2_websocket__helloworld.yaml
https://www.websocket.org/echo.html

Integration Service Documentation, Release 3.1.0

After this, you should see two WebSocket messages received automatically, due to the fact that the WebSocket
Server hosted in the Integration Service detected an incoming connection: a subscribe operation message for
the hello_ros2 topic; and an advertise operation for the hello_websocket topic.

• Since the WebSocket client to ROS 2 echo example is being tested, we must first send an advertise operation
request for the hello_ros2 topic. To do so, under the Message text box, enter the following and press Send:

{"op": "advertise", "topic": "hello_ros2”, "type": "std_msgs/String"}

After this, we can send individual messages from the WebSocket client, using the publish operation:

{"op": "publish", "topic": "hello_ros2", "msg": {"data": "Hello ROS 2"}}

The messages should be shown in the ROS 2 echo terminal.

6.18.2 Server - Client

This page gathers all the Integration Service existing examples based on the server - client paradigm that connect
different protocols which handle incompatible types.

DDS Service Server

This example tackles the task of bridging a DDS server with one or more client applications, implemented using a
wide variety of protocols.

Specifically, we discuss how to forward petitions coming from ROS 1, ROS 2 and a WebSocket service client applica-
tions to a Fast DDS DDSAddTwoInts server application, so that it can process them and fulfill each request with a
proper answer message.

Note: If you are looking for an example on how to perform a service request from a DDS client to another protocol,
please refer to any of the remaining examples in the server/client examples section.

126 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having Fast DDS (v.2.0.0 or superior) installed and the Integration Service DDSAddTwoInts exam-
ple working. This example can be found in the main Integration Service repository, under the exam-
ples/utils/dds/DDSAddTwoInts folder; to compile it, you can either compile the whole Integration Service
project using colcon with the CMake flag BUILD_EXAMPLES enabled; or execute the following steps:

cd ~/is-workspace/src/Integration-Service/examples/utils/dds/DDSAddTwoInts
mkdir build && cd build
cmake .. -DBUILD_EXAMPLES=ON && make

• Having the Fast DDS System Handle installed. You can download it from the FastDDS-SH dedicated reposi-
tory into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/FastDDS-SH.git src/FastDDS-SH

• Having ROS 1 (Melodic or superior) installed and the Integration Service example_interfaces ROS 1
package compiled. This package can be found in the main Integration Service repository, under the exam-
ples/utils/ros1/src/example_interfaces folder. To compile and install it:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
cd ~/is-workspace/src/Integration-Service/example/utils/ros1/catkin_ws
catkin_make -DBUILD_EXAMPLES=ON -DCMAKE_INSTALL_PREFIX=/opt/ros/$<ROS1_DISTRO>
→˓install

• Having the ROS 1 System Handle installed. You can download it from the ROS1-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS1-SH.git src/ROS1-SH

• Having ROS 2 (Foxy or superior) installed, along with the example_interfaces types package. To install
it:

apt install ros-$<ROS2_DISTRO>-example-interfaces

• Having the ROS 2 System Handle installed. You can download it from the ROS2-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH src/ros2-sh

• Having OpenSSL and WebSocket++ installed:

apt install libssl-dev libwebsocketpp-dev

• Having the WebSocket System Handle installed. You can download it from the WebSocket-SH dedicated
repository into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/WebSocket-SH.git src/WebSocket-SH

6.18. Different Protocols 127

https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSAddTwoInts
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSAddTwoInts
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/ros1/src/example_interfaces
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/ros1/src/example_interfaces
https://github.com/eProsima/ROS1-SH
https://github.com/eProsima/ROS2-SH
https://www.openssl.org/
https://github.com/zaphoyd/websocketpp
https://github.com/eProsima/WebSocket-SH
https://github.com/eProsima/WebSocket-SH

Integration Service Documentation, Release 3.1.0

After you have everything correctly installed in your is-workspace, build the packages by running:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
colcon build --packages-skip-regex is-ros1 -DMIX_ROS_PACKAGES="example_interfaces"
source /opt/ros/$<ROS1_DISTRO>/setup.bash
colcon build --cmake-args -DBUILD_EXAMPLES=ON -DMIX_ROS_PACKAGES="example_interfaces"

Deployment

Below we explain how to deploy a full example of this communication, calling the DDS service from each of the
available clients.

Launch the DDS AddTwoInts server

To do so, open a terminal, go to the is-workspace folder and execute the following command:

cd ~/is-workspace
./build/is-examples/dds/DDSAddTwoInts/DDSAddTwoInts -m server

The server will start running under the default DDS domain ID 0 listening for incoming petitions.

Execute Integration Service

Open two terminals:

• In the first terminal, source the ROS 1 installation and run the roscore:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
roscore

• In the second terminal, go to the is-workspace folder, source the ROS 1, ROS 2 and local installa-
tions, and execute Integration Service with the integration-service command followed by the fast-
dds_server__addtwoints.yaml configuration file located in the src/Integration-Service/examples/
basic folder.

source /opt/ros/$<ROS1_DISTRO>/setup.bash
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/fastdds_server__
→˓addtwoints.yaml

Call the service from ROS 1

In a new terminal, source your ROS 1 installation and invoke the service by executing the following instructions:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
rosservice call /add_two_ints 3 4

You should receive the following output from the DDS server processing the petition:

sum: 7

128 Chapter 6. Contact and commercial support

https://github.com/eProsima/Integration-Service/blob/main/examples/basic/fastdds_server__addtwoints.yaml
https://github.com/eProsima/Integration-Service/blob/main/examples/basic/fastdds_server__addtwoints.yaml

Integration Service Documentation, Release 3.1.0

Call the service from ROS 2

In a new terminal, source your ROS 2 installation and invoke the service by executing the following instruction:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 service call /add_two_ints example_interfaces/srv/AddTwoInts "{a: 5, b: 17}"

You should receive the following output from the DDS server processing the petition:

waiting for service to become available...
requester: making request: example_interfaces.srv.AddTwoInts_Request(a=5, b=17)

response:
example_interfaces.srv.AddTwoInts_Response(sum=22)

Call the service from WebSocket

The WebSocket client demo application used for this example can be found in the websocket.org/echo webpage:

• First, under the Location section, connect to the WebSocket server automatically deployed by the Integration
Service. To do so, and since the example is being run without SSL security, copy and paste the following URL
into the Location field text box, and press Connect:

ws://localhost:80

• Now it is time to advertise the service we want to use; to do so, under the Message text box, enter the following
and press Send:

{"op": "advertise_service", "service": "add_two_ints", "request_type":
→˓"AddTwoInts_Request", "reply_type": "AddTwoInts_Response"}

• Finally, after the service has been advertised, call it by sending the following message from the WebSocket echo:

{"op": "call_service", "service": "add_two_ints", "args": {"a": 14, "b": 25}}

After this, in the Log, you should receive the following response from the DDS server:

RECEIVED: {"op":"service_response","result":true,"service":"add_two_ints","values":{
→˓"sum":39}}

ROS 1 Service Server

This example tackles the task of bridging a ROS 1 server with one or more client applications, implemented using a
wide variety of protocols.

Specifically, we discuss how to forward petitions coming from Fast DDS, ROS 2 and a WebSocket service client
applications to a ROS 1 add_two_ints_server server application, from a provided Integration Service custom
ROS 1 package called add_two_ints_server; so that it can process them and fulfill each request with a proper
answer message.

6.18. Different Protocols 129

https://www.websocket.org/echo.html

Integration Service Documentation, Release 3.1.0

Note: If you are looking for an example on how to perform a service request from a ROS 1 client to another protocol,
please refer to any of the remaining examples in the server/client examples section.

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having Fast DDS (v.2.0.0 or superior) installed and the Integration Service DDSAddTwoInts exam-
ple working. This example can be found in the main Integration Service repository, under the exam-
ples/utils/dds/DDSAddTwoInts folder; to compile it, you can either compile the whole Integration Service
project using colcon with the CMake flag BUILD_EXAMPLES enabled; or execute the following steps:

cd ~/is-workspace/src/Integration-Service/examples/utils/dds/DDSAddTwoInts
mkdir build && cd build
cmake .. -DBUILD_EXAMPLES=ON && make

• Having the Fast DDS System Handle installed. You can download it from the FastDDS-SH dedicated reposi-
tory into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/FastDDS-SH.git src/FastDDS-SH

• Having ROS 1 (Melodic or superior) installed and the Integration Service example_interfaces and
add_two_ints_server ROS 1 packages compiled. These package can be found in the main Integration
Service repository, under the examples/utils/ros1 folder. The former one needs to be compiled and installed
before the whole the rest of the ROS 1-related Integration Service packages; to do so:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
cd ~/is-workspace/src/Integration-Service/example/utils/ros1/catkin_ws
catkin_make -DBUILD_EXAMPLES=ON -DCMAKE_INSTALL_PREFIX=/opt/ros/$<ROS1_DISTRO>
→˓install

130 Chapter 6. Contact and commercial support

https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSAddTwoInts
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSAddTwoInts
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/ros1

Integration Service Documentation, Release 3.1.0

• Having the ROS 1 System Handle installed. You can download it from the ROS1-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS1-SH.git src/ROS1-SH

• Having ROS 2 (Foxy or superior) installed, along with the example_interfaces package. To install it:

apt install ros-$<ROS2_DISTRO>-example-interfaces

• Having the ROS 2 System Handle installed. You can download it from the ROS2-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH src/ros2-sh

• Having OpenSSL and WebSocket++ installed:

apt install libssl-dev libwebsocketpp-dev

• Having the WebSocket System Handle installed. You can download it from the WebSocket-SH dedicated
repository into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/WebSocket-SH.git src/WebSocket-SH

After you have everything correctly installed in your is-workspace, build the packages by running:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
colcon build --packages-skip-regex is-ros1 -DMIX_ROS_PACKAGES="example_interfaces"
source /opt/ros/$<ROS1_DISTRO>/setup.bash
colcon build --cmake-args -DBUILD_EXAMPLES=ON -DMIX_ROS_PACKAGES="example_interfaces"

Deployment

Below we explain how to deploy a full example of this communication, calling the ROS 1 service from each of the
available clients.

Launch the ROS 1 add_two_ints_server node

Open two terminals:

• In the first terminal, source the ROS 1 installation and run the roscore:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
roscore

• In the second terminal, go to the is-workspace directory. Then, source the ROS 1 and local installations,
and execute the add_two_ints_server ROS 1 node:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
rosrun add_two_ints_server add_two_ints_server_node

The server will start running as an independent ROS 1 node, listening for incoming petitions.

6.18. Different Protocols 131

https://github.com/eProsima/ROS1-SH
https://github.com/eProsima/ROS2-SH
https://www.openssl.org/
https://github.com/zaphoyd/websocketpp
https://github.com/eProsima/WebSocket-SH
https://github.com/eProsima/WebSocket-SH

Integration Service Documentation, Release 3.1.0

Execute Integration Service

To launch Integration Service open a terminal and go to the is-workspace folder. Then, source the ROS 1, ROS
2 and local installations, and execute Integration Service with the integration-service command followed by
the ros1_server__addtwoints.yaml configuration file located in the src/Integration-Service/examples/
basic folder.

source /opt/ros/$<ROS1_DISTRO>/setup.bash
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/ros1_server__
→˓addtwoints.yaml

Call the service from Fast DDS

In a new terminal, go to the is-workspace folder and execute the following command:

./build/is-examples/dds/DDSAddTwoInts/DDSAddTwoInts -m client -c <number_of_requests>

The DDSAddTwoInts example application will request to add two numbers an specific amount of times, specified with
the -c flag; if not present, ten requests will be performed by default.

For instance, if -c 4, should see something like this in your screen, indicating that the ROS 1 server is processing the
requests:

AddTwoIntsService client running under DDS Domain ID: 0
AddTwoIntsService client performing 4 requests.
AddTwoIntsService client:

- Request 1 + 3
- Received response: 4

AddTwoIntsService client:
- Request 2 + 4
- Received response: 6

AddTwoIntsService client:
- Request 3 + 5
- Received response: 8

AddTwoIntsService client:
- Request 4 + 6
- Received response: 10

Call the service from ROS 2

In a new terminal, source your ROS 2 installation and invoke the service by executing the following instructions:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 service call /add_two_ints example_interfaces/srv/AddTwoInts "{a: 5, b: 17}"

You should receive the following output from the ROS 1 server processing the petition:

waiting for service to become available...
requester: making request: example_interfaces.srv.AddTwoInts_Request(a=5, b=17)

response:
example_interfaces.srv.AddTwoInts_Response(sum=22)

132 Chapter 6. Contact and commercial support

https://github.com/eProsima/Integration-Service/blob/main/examples/basic/ros1_server__addtwoints.yaml

Integration Service Documentation, Release 3.1.0

Call the service from WebSocket

The WebSocket client demo application used for this example can be found in the websocket.org/echo webpage:

• First, under the Location section, connect to the WebSocket server automatically deployed by the Integration
Service. To do so, and since the example is being run without SSL security, copy and paste the following URL
into the Location field text box, and press Connect:

ws://localhost:80

• Now it is time to advertise the service we want to use; to do so, under the Message text box, enter the following
and press Send:

{"op": "advertise_service", "service": "add_two_ints", "request_type":
→˓"AddTwoInts_Request", "reply_type": "AddTwoInts_Response"}

• Finally, after the service has been advertised, call it by sending the following message from the WebSocket echo:

{"op": "call_service", "service": "add_two_ints", "args": {"a": 14, "b": 25}}

After this, in the Log, you should receive the following response from the ROS 1 server:

RECEIVED: {"op":"service_response","result":true,"service":"add_two_ints","values":{
→˓"sum":39}}

ROS 2 Service Server

This example tackles the task of bridging a ROS 2 server with one or more client applications, implemented using a
wide variety of protocols.

Specifically, we discuss how to forward petitions coming from Fast DDS, ROS 1 and a WebSocket service
client applications to a ROS 2 add_two_ints_server server application, from the built-in ROS 2 package
demo_nodes_cpp; so that it can process them and fulfill each request with a proper answer message.

Note: If you are looking for an example on how to perform a service request from a ROS 2 client to another protocol,

6.18. Different Protocols 133

https://www.websocket.org/echo.html

Integration Service Documentation, Release 3.1.0

please refer to any of the remaining examples in the server/client examples section.

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having Fast DDS (v.2.0.0 or superior) installed and the Integration Service DDSAddTwoInts exam-
ple working. This example can be found in the main Integration Service repository, under the exam-
ples/utils/dds/DDSAddTwoInts folder; to compile it, you can either compile the whole Integration Service
project using colcon with the CMake flag BUILD_EXAMPLES enabled; or execute the following steps:

cd ~/is-workspace/src/Integration-Service/examples/utils/dds/DDSAddTwoInts
mkdir build && cd build
cmake .. -DBUILD_EXAMPLES=ON && make

• Having the Fast DDS System Handle installed. You can download it from the FastDDS-SH dedicated reposi-
tory into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/FastDDS-SH.git src/FastDDS-SH

• Having ROS 1 (Melodic or superior) installed and the Integration Service example_interfaces ROS 1
package compiled. This package can be found in the main Integration Service repository, under the exam-
ples/utils/ros1/src/example_interfaces folder. To compile and install it:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
cd ~/is-workspace/src/Integration-Service/example/utils/ros1/catkin_ws
catkin_make -DBUILD_EXAMPLES=ON -DCMAKE_INSTALL_PREFIX=/opt/ros/$<ROS1_DISTRO>
→˓install

• Having the ROS 1 System Handle installed. You can download it from the ROS1-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS1-SH.git src/ROS1-SH

• Having ROS 2 (Foxy or superior) installed, along with the demo_nodes_cpp package. To install it:

apt install ros-$<ROS2_DISTRO>-demo-nodes-cpp

• Having the ROS 2 System Handle installed. You can download it from the ROS2-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH src/ros2-sh

• Having OpenSSL and WebSocket++ installed:

apt install libssl-dev libwebsocketpp-dev

• Having the WebSocket System Handle installed. You can download it from the WebSocket-SH dedicated
repository into the is-workspace where you have Integration Service installed:

134 Chapter 6. Contact and commercial support

https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSAddTwoInts
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSAddTwoInts
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/ros1/src/example_interfaces
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/ros1/src/example_interfaces
https://github.com/eProsima/ROS1-SH
https://github.com/eProsima/ROS2-SH
https://www.openssl.org/
https://github.com/zaphoyd/websocketpp
https://github.com/eProsima/WebSocket-SH
https://github.com/eProsima/WebSocket-SH

Integration Service Documentation, Release 3.1.0

cd ~/is-workspace
git clone https://github.com/eProsima/WebSocket-SH.git src/WebSocket-SH

After you have everything correctly installed in your is-workspace, build the packages by running:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
colcon build --packages-skip-regex is-ros1 -DMIX_ROS_PACKAGES="example_interfaces"
source /opt/ros/$<ROS1_DISTRO>/setup.bash
colcon build --cmake-args -DBUILD_EXAMPLES=ON -DMIX_ROS_PACKAGES="example_interfaces"

Deployment

Below we explain how to deploy a full example of this communication, calling the ROS 2 service from each of the
available clients.

Launch the ROS 2 demo_nodes_cpp add_two_ints_server

To do so, open a terminal and execute the following command:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 run demo_nodes_cpp add_two_ints_server

The server will start running as an independent ROS 2 node, listening for incoming petitions.

Execute Integration Service

Open two terminals:

• In the first terminal, source the ROS 1 installation and run the roscore:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
roscore

• In the second terminal, go to the is-workspace folder, source the ROS 1, ROS 2 and local
installations, and execute Integration Service with the integration-service command followed
by the ros2_server__addtwoints.yaml configuration file located in the src/Integration-Service/
examples/basic folder.

source /opt/ros/$<ROS1_DISTRO>/setup.bash
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/ros2_server__
→˓addtwoints.yaml

6.18. Different Protocols 135

https://github.com/eProsima/Integration-Service/blob/main/examples/basic/ros2_server__addtwoints.yaml

Integration Service Documentation, Release 3.1.0

Call the service from Fast DDS

In a new terminal, go to the is-workspace folder and execute the following command:

./build/is-examples/dds/DDSAddTwoInts/DDSAddTwoInts -m client -c <number_of_requests>

The DDSAddTwoInts example application will request to add two numbers an specific amount of times, specified with
the -c flag; if not present, ten requests will be performed by default.

For instance, if -c 4, should see something like this in your screen, indicating that the ROS 2 server is processing the
requests:

AddTwoIntsService client running under DDS Domain ID: 0
AddTwoIntsService client performing 4 requests.
AddTwoIntsService client:

- Request 1 + 3
- Received response: 4

AddTwoIntsService client:
- Request 2 + 4
- Received response: 6

AddTwoIntsService client:
- Request 3 + 5
- Received response: 8

AddTwoIntsService client:
- Request 4 + 6
- Received response: 10

Call the service from ROS 1

In a new terminal, source your ROS 1 installation and invoke the service by executing the following instructions:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
rosservice call /add_two_ints 3 4

You should receive the following output from the ROS 2 server processing the petition:

sum: 7

Call the service from WebSocket

The WebSocket client demo application used for this example can be found in the websocket.org/echo webpage:

• First, under the Location section, connect to the WebSocket server automatically deployed by the Integration
Service. To do so, and since the example is being run without SSL security, copy and paste the following URL
into the Location field text box, and press Connect:

ws://localhost:80

• Now it is time to advertise the service we want to use; to do so, under the Message text box, enter the following
and press Send:

{"op": "advertise_service", "service": "add_two_ints", "request_type":
→˓"AddTwoInts_Request", "reply_type": "AddTwoInts_Response"}

• Finally, after the service has been advertised, call it by sending the following message from the WebSocket echo:

136 Chapter 6. Contact and commercial support

https://www.websocket.org/echo.html

Integration Service Documentation, Release 3.1.0

{"op": "call_service", "service": "add_two_ints", "args": {"a": 14, "b": 25}}

After this, in the Log, you should receive the following response from the ROS 2 server:

RECEIVED: {"op":"service_response","result":true,"service":"add_two_ints","values":{
→˓"sum":39}}

WebSocket Service Server

This example tackles the task of bridging a WebSocket server with one or more client applications, implemented using
a wide variety of protocols.

Specifically, we discuss how to forward petitions coming from Fast DDS, ROS 1 and ROS 2 service client applications
to a WebSocket WebSocketAddTwoInts server application, so that it can process them and fulfill each request with
a proper answer message.

Note: If you are looking for an example on how to perform a service request from a WebSocket client to another
protocol, please refer to any of the remaining examples in the server/client examples section.

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having Fast DDS (v.2.0.0 or superior) installed and the Integration Service DDSAddTwoInts exam-
ple working. This example can be found in the main Integration Service repository, under the exam-
ples/utils/dds/DDSAddTwoInts folder; to compile it, you can either compile the whole Integration Service
project using colcon with the CMake flag BUILD_EXAMPLES enabled; or execute the following steps:

cd ~/is-workspace/src/Integration-Service/examples/utils/dds/DDSAddTwoInts
mkdir build && cd build
cmake .. -DBUILD_EXAMPLES=ON && make

6.18. Different Protocols 137

https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSAddTwoInts
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSAddTwoInts

Integration Service Documentation, Release 3.1.0

• Having the Fast DDS System Handle installed. You can download it from the FastDDS-SH dedicated reposi-
tory into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/FastDDS-SH.git src/FastDDS-SH

• Having ROS 1 (Melodic or superior) installed and the Integration Service example_interfaces ROS 1
package compiled. This package can be found in the main Integration Service repository, under the exam-
ples/utils/ros1/src/example_interfaces folder. To compile and install it:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
cd ~/is-workspace/src/Integration-Service/example/utils/ros1/catkin_ws
catkin_make -DBUILD_EXAMPLES=ON -DCMAKE_INSTALL_PREFIX=/opt/ros/$<ROS1_DISTRO>
→˓install

• Having the ROS 1 System Handle installed. You can download it from the ROS1-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS1-SH.git src/ROS1-SH

• Having ROS 2 (Foxy or superior) installed, along with the example_interfaces types package. To install
it:

apt install ros-$<ROS2_DISTRO>-example-interfaces

• Having the ROS 2 System Handle installed. You can download it from the ROS2-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH src/ros2-sh

• Having OpenSSL and WebSocket++ installed:

apt install libssl-dev libwebsocketpp-dev

Also, the Integration Service WebSocketAddTwoInts example will be needed for the tutorial.
This example application can be found in the main Integration Service repository, under the exam-
ples/utils/websocket/WebSocketAddTwoInts folder. To compile it, you can either compile the whole Integra-
tion Service project using colcon with the CMake flag BUILD_EXAMPLES enabled; or execute the following
steps:

cd ~/is-workspace/src/Integration-Service/examples/utils/websocket/
→˓WebSocketAddTwoInts
mkdir build && cd build
cmake .. -DBUILD_EXAMPLES=ON && make

• Having the WebSocket System Handle installed. You can download it from the WebSocket-SH dedicated
repository into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/WebSocket-SH.git src/WebSocket-SH

After you have everything correctly installed in your is-workspace, build the packages by running:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
colcon build --packages-skip-regex is-ros1 -DMIX_ROS_PACKAGES="example_interfaces"

(continues on next page)

138 Chapter 6. Contact and commercial support

https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/ros1/src/example_interfaces
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/ros1/src/example_interfaces
https://github.com/eProsima/ROS1-SH
https://github.com/eProsima/ROS2-SH
https://www.openssl.org/
https://github.com/zaphoyd/websocketpp
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/websocket/WebSocketAddTwoInts
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/websocket/WebSocketAddTwoInts
https://github.com/eProsima/WebSocket-SH
https://github.com/eProsima/WebSocket-SH

Integration Service Documentation, Release 3.1.0

(continued from previous page)

source /opt/ros/$<ROS1_DISTRO>/setup.bash
colcon build --cmake-args -DBUILD_EXAMPLES=ON -DMIX_ROS_PACKAGES="example_interfaces"

Deployment

Below we explain how to deploy a full example of this communication, calling the WebSocket service from each of
the available clients.

Launch the WebSocket AddTwoInts server

To do so, open a terminal, go to the is-workspace folder and execute the following command:

cd ~/is-workspace
./build/is-examples/websocket/WebSocketAddTwoInts/WebSocketAddTwoInts

The WebSocket server will start running, listening for incoming client connection petitions; after that, it will we able
to dispatch service request petitions with a proper answer message.

Execute Integration Service

Open two terminals:

• In the first terminal, source the ROS 1 installation and run the roscore:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
roscore

• In the second terminal, go to the is-workspace folder, source the ROS 1, ROS 2 and local in-
stallations, and execute Integration Service with the integration-service command followed by
the websocket_server__addtwoints.yaml configuration file located in the src/Integration-Service/
examples/basic folder.

source /opt/ros/$<ROS1_DISTRO>/setup.bash
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/basic/websocket_server__
→˓addtwoints.yaml

Call the service from Fast DDS

In a new terminal, go to the is-workspace folder and execute the following command:

./build/is-examples/dds/DDSAddTwoInts/DDSAddTwoInts -m client -c <number_of_requests>

The DDSAddTwoInts example application will request to add two numbers an specific amount of times, specified with
the -c flag; if not present, ten requests will be performed by default.

For instance, if -c 4, should see something like this in your screen, indicating that the WebSocket server is processing
the requests:

6.18. Different Protocols 139

https://github.com/eProsima/Integration-Service/blob/main/examples/basic/websocket_server__addtwoints.yaml

Integration Service Documentation, Release 3.1.0

AddTwoIntsService client running under DDS Domain ID: 0
AddTwoIntsService client performing 4 requests.
AddTwoIntsService client:

- Request 1 + 3
- Received response: 4

AddTwoIntsService client:
- Request 2 + 4
- Received response: 6

AddTwoIntsService client:
- Request 3 + 5
- Received response: 8

AddTwoIntsService client:
- Request 4 + 6
- Received response: 10

Call the service from ROS 1

In a new terminal, source your ROS 1 installation and invoke the service by executing the following instructions:

source /opt/ros/$<ROS1_DISTRO>/setup.bash
rosservice call /add_two_ints 3 4

You should receive the following output from the WebSocket server processing the petition:

sum: 7

Call the service from ROS 2

In a new terminal, source your ROS 2 installation and invoke the service by executing the following instruction:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 service call /add_two_ints example_interfaces/srv/AddTwoInts "{a: 5, b: 17}"

You should receive the following output from the WebSocket server processing the petition:

waiting for service to become available...
requester: making request: example_interfaces.srv.AddTwoInts_Request(a=5, b=17)

response:
example_interfaces.srv.AddTwoInts_Response(sum=22)

6.19 Same Protocol

This page gathers all the existing examples for Integration Service that connect applications written under the same
protocol. They are not focused on showing how effective Integration Service is capable of translate one protocol’s
types into another’s (see Different Protocols for that purpose); instead, this section tries to depict how easy is for
Integration Service to bridge logically isolated applications written under the same protocol.

140 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

6.19.1 DDS Domain ID change

A very typical scenario within the DDS ecosystem is that of two applications running under different DDS domain
IDs, so that they are isolated from each other; however, it might be required to bridge some of the topics published by
one of the applications, so that a subscriber on a different domain ID can consume this information. This is where the
Integration Service plays a fundamental role, by allowing to bridge two DDS dataspaces easily.

The steps described below allows a Fast DDS HelloWorld publisher application, running under a certain domain ID,
to communicate with a Fast DDS HelloWorld subscriber application, which is running under a different domain ID.

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having Fast DDS (v.2.0.0 or superior) installed and the Integration Service DDSHelloWorld exam-
ple working. This example can be found in the main Integration Service repository, under the exam-
ples/utils/dds/DDSHelloWorld folder; to compile it, you can either compile the whole Integration Service project
using colcon with the CMake flag BUILD_EXAMPLES enabled; or execute the following steps:

cd ~/is-workspace/src/Integration-Service/examples/utils/dds/DDSHelloWorld
mkdir build && cd build
cmake .. -DBUILD_EXAMPLES=ON && make

6.19. Same Protocol 141

https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSHelloWorld
https://github.com/eProsima/Integration-Service/tree/main/examples/utils/dds/DDSHelloWorld

Integration Service Documentation, Release 3.1.0

• Having the Fast DDS System Handle installed. You can download it from the dedicated repository into the
is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/FastDDS-SH.git src/FastDDS-SH

After you have everything correctly installed in your is-workspace, build the packages by running:

colcon build --cmake-args -DBUILD_FASTDDS_EXAMPLES=ON

Deployment

Below we explain how to deploy an example of this use case. To do so, open three terminals:

• In the first terminal, execute the DDSHelloWorld example, as a subscriber running under DDS domain ID 3
and subscribed to the topic hello_domain_3:

cd ~/is-workspace/build/is-examples/dds/DDSHelloWorld
./DDSHelloWorld -m subscriber -n hello_domain_3 -d 3

• In the second terminal, execute the DDSHelloWorld example, as a publisher running under DDS domain ID
5 and publishing data to the topic hello_domain_3:

cd ~/is-workspace/build/is-examples/dds/DDSHelloWorld
./DDSHelloWorld -m publisher -n hello_domain_3 -d 5

Up to this point, no communication should be seen between the publisher and the subscriber, due to the domain ID
change. This is where Integration Service comes into play to make the communication possible.

• In the third terminal, go to the is-workspace folder, source the local installations, and execute Integra-
tion Service with the integration-service command followed by the fastdds__domain_id_change.yaml
configuration file located in the src/Integration-Service/examples/basic folder:

cd ~/is-workspace
source install/setup.bash
integration-service src/Integration-Service/examples/basic/fastdds__domain_id_
→˓change.yaml

Once the last command is executed, the two applications will start communicating.

6.19.2 ROS 2 Domain ID change

A very typical scenario within the ROS 2 ecosystem is that of two applications running under different ROS 2 domain
IDs, so that they are isolated from each other; however, it might be required to bridge some of the published topics
by the first application, so that a subscriber on the second application, running on a different domain ID can consume
this information. This is where the Integration Service plays a fundamental role, by allowing to bridge two ROS 2
dataspaces easily.

The steps described below allow a ROS 2 publisher application, running under a certain domain ID, to communicate
with a ROS 2 subscriber (echo) application, which is running under a different domain ID.

142 Chapter 6. Contact and commercial support

https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/Integration-Service/blob/main/examples/basic/fastdds__domain_id_change.yaml

Integration Service Documentation, Release 3.1.0

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to get this example working, the following requirements must be met:

• Having ROS 2 (Foxy or superior) installed, with the talker-listener example working.

• Having the ROS 2 System Handle installed. You can download it from the dedicated repository into the
is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH

After you have everything correctly installed in your is-workspace, build the packages by running:

colcon build

Deployment

Below we explain how to deploy an example of this use case. To do so, open three terminals:

• In the first terminal, source the ROS 2 installation and launch the ROS 2 pub application, under domain ID 5:

ROS_DOMAIN_ID=5 ros2 topic pub -r 1 /string_topic std_msgs/String "{data: \"Hello,
→˓ ROS 2 domain 10\"}"

• In the second terminal, source the ROS 2 installation and launch the ROS 2 echo application, under domain ID
10:

6.19. Same Protocol 143

https://github.com/eProsima/ROS2-SH

Integration Service Documentation, Release 3.1.0

ROS_DOMAIN_ID=10 ros2 topic echo /string_topic std_msgs/msg/String

Up to this point, no communication should be seen between the publisher and the subscriber, due to the domain ID
change. This is where Integration Service comes into play to make the communication possible.

• In the third terminal, go to the is-workspace folder, source the local installations, and execute Integration
Service with the integration-service command followed by the ros2__domain_id_change.yaml config-
uration file located in the src/Integration-Service/basic folder:

cd ~/is-workspace
source install/setup.bash
integration-service src/Integration-Service/examples/basic/ros2__domain_id_change.
→˓yaml

Once the last command is executed, the two applications will start communicating.

6.20 WAN Communication

This page gathers all the existing examples for Integration Service that allow to bridge through the Internet systems
hosted by logically separated WANs, which could be even located in different geographical regions.

6.20.1 WAN-TCP tunneling over DDS

One of the most critical and powerful use-cases of Integration Service is that of two systems located in different
geographical regions which need to communicate through the Internet, using a WAN connection.

Using a pair of Integration Service instances, one for each system, this scenario can be addressed with a secure TCP
tunnel thanks to the SSL-TCP capabilities of Fast DDS.

Integration Service acts as a gateway to translate each system to DDS, which then makes the tunneling over SSL-TCP
possible. A proper configuration of the destination router and firewalls allows the communication.

The example discussed here illustrates, specifically, how to configure Integration Service to achieve WAN communi-
cation between two separated ROS 2 instances. Notice, however, that any other applications from systems integrated
in the Integration Service ecosystem could be bridged across the WAN, thanks to the Fast DDS System Handle TCP
tunneling capabilities.

144 Chapter 6. Contact and commercial support

https://github.com/eProsima/Integration-Service/blob/main/examples/basic/ros2__domain_id_change.yaml

Integration Service Documentation, Release 3.1.0

Requirements

To prepare the deployment and setup the environment, you need to have Integration Service correctly installed in your
system. To do so, please follow the steps delineated in the Installation section.

Also, to test this example properly, you need two separate subnets that are not connected but both with internet access,
or a testing environment simulating this scenario (for example, two routers, with one of them acting as an ISP for the
second).

Notice that both the route tables and the NAT must be configured so as to ensure proper port redirection before starting
the test.

Note: The IP addresses shown here only serve the purpose of illustrating the example. The important information
is the real public IP of the server machine. Also, its router must enable the NAT to forward the listening port to the
server.

Also, to get this example working, the following requirements must be met in both machines:

6.20. WAN Communication 145

Integration Service Documentation, Release 3.1.0

• Having ROS 2 (Foxy or superior) installed, with the talker-listener example working.

• Having the ROS 2 System Handle installed. You can download it from the ROS2-SH dedicated repository into
the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/ROS2-SH.git src/ROS2-SH

• Having Fast DDS (v.2.0.0 or superior) installed.

• Having the Fast DDS System Handle installed. You can download it from the FastDDS-SH dedicated reposi-
tory into the is-workspace where you have Integration Service installed:

cd ~/is-workspace
git clone https://github.com/eProsima/FastDDS-SH.git src/FastDDS-SH

After you have everything correctly installed, build the packages by running:

colcon build

Once the environment is prepared and tested (for example, using a port-scanner), modify the file wan_config.
xml inside the folder src/FastDDS-SH/examples/wan/ to match the IP address and port of with the WAN IP
address and forwarded port of your environment.

Deployment

This examples launches a ROS 2 talker in the server machine, and a ROS 2 listener in the client machine. An
Integration Service instance will communicate these two applications by translating the types and topics of ROS 2 to
those of Fast DDS, and then use the WAN-TCP communication capabilities of the latter to operate the tunneling.

To test it, open two terminals in each machine.

On the server side:

• In the first terminal, source the ROS 2 installation and launch the ROS 2 talker example:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 run demo_nodes_cpp talker

• In the second terminal, go to the is-workspace folder, source the ROS 2, Fast DDS, and local installations,
and execute Integration Service with the integration-service command followed by the the server
YAML configuration file located in the src/Integration-Service/examples/wan_tunneling/
ros2__wan_helloworld folder:

cd ~/is-workspace
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/wan_tunneling/ros2__wan_
→˓helloworld/wan_server_talker.yaml

On the client side:

• In the first terminal, launch the ROS 2 listener example:

source /opt/ros/$<ROS2_DISTRO>/setup.bash
ros2 run demo_nodes_cpp listener

146 Chapter 6. Contact and commercial support

https://github.com/eProsima/ROS2-SH
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/FastDDS-SH
https://github.com/eProsima/Integration-Service/blob/main/examples/wan_tunneling/ros2__wan_helloworld/wan_server_talker.yaml
https://github.com/eProsima/Integration-Service/blob/main/examples/wan_tunneling/ros2__wan_helloworld/wan_server_talker.yaml

Integration Service Documentation, Release 3.1.0

• In the second terminal, go to the is-workspace folder, source the ROS 2, Fast DDS, and local installa-
tions, and execute Integration Service with the integration-service command followed by the the client
YAML configuration file located in the src/Integration-Service/examples/wan_tunneling/
ros2__wan_helloworld folder:

cd ~/dds-is-workspace
source /opt/ros/$<ROS2_DISTRO>/setup.bash
source install/setup.bash
integration-service src/Integration-Service/examples/wan_tunneling/ros2__wan_
→˓helloworld/wan_client_listener.yaml

Once the two Integration Service instances match, the ROS 2 talker-listener example will start to communi-
cate.

Warning: If the example doesn’t work, review carefully your NAT configuration.

6.21 Latest version

6.21.1 v3.1.0

This release includes the following bugfixes and improvements:

Common

• Added new compilation flags to compile each middleware examples independently.

• Document in more detail the dependencies required for the Integration Service Core and each System Handle.

• Fixed infinite loop problem produced when there are internal publishers and subscribers over the same topic.

• Avoid creation of empty folders when compiling using colcon.

ROS 1 System Handle

• Fixed bug producing a high CPU usage.

ROS 2 System Handle

• Cross-compatibility with ROS 2 Galactic.

• Added new compilation flag to select which ROS 2 version will be used.

WebSocket System Handle

• Handle properly asio and websocketpp exceptions.

6.22 Previous versions

6.22.1 v3.0.0

This release comprises a whole restructuring and renaming of the project, formerly known as SOSS, into Integration
Service.

The ROS 2 and WebSocket System Handles, which were previously included as subfolders of the main project, have
been separated into independent repositories.

6.21. Latest version 147

https://github.com/eProsima/Integration-Service/blob/main/examples/wan_tunneling/ros2__wan_helloworld/wan_client_listener.yaml
https://github.com/eProsima/Integration-Service/blob/main/examples/wan_tunneling/ros2__wan_helloworld/wan_client_listener.yaml

Integration Service Documentation, Release 3.1.0

Important: Previous versions are considered deprecated, and it is not recommended to use them from now on.

There are some global changes that affect to all repositories; they are listed here:

• Completed migration from SOSS to Integration Service. This, code wise, included changing the C++
namespace convention of the whole project, from soss::core to eprosima::is::core and from
soss::<SH_NAME> to eprosima::is::sh::<SH_NAME>.

• Used eProsima xTypes as the common language for the Core to speak to each System Handle.

• Created unique pool for SubscriptionCallback and RequestCallback lambda functions. Prior to
this version, they were being copied multiple among the Core and involved System Handles, leading to unnec-
essary copies and entities destruction problems.

• Added new Logger class, with different logging levels: DEBUG, INFO, WARN, ERROR.

• Debug logging traces are automatically enabled if the project is compiled in debug mode.

• Add much more traces and unify the logging style.

• Full API reference <api_reference> documentation using Doxygen.

• Migrated whole test suite from Catch to Google Test.

• Applied uncrustify rules.

• Added brand new README section for each repository, with detailed information about the project status and
features.

• Added global compilation flags for building tests, examples, libraries and the API reference.

In relation to each repository, these are the most relevant changes for this major release:

Core

• Add an optional YAML configuration file types section, with an idl subsection. This allows users to introduce
their own data type definitions at runtime, following the IDL specification.

• Inclusion of a types-from option in the YAML configuration file, to allow type inheritance among System Handles.

• Created a Core GitHub action automated task for unitary and integration tests.

• Skip blank services names.

• JSON conversion library: handle special double/float values (Inf, NaN. . .).

• JSON conversion library: boolean type support.

• JSON conversion library: sequences and arrays.

• Moved all example configuration files into a common folder.

• Created utility packages and applications for testing all the examples tutorials available in the documentation.

• Fix non-resizable containers for conversion to/from ROS 1 and ROS 2 static types definitions.

Fast DDS System Handle

• Migrated from Fast RTPS to Fast DDS.

Important: From now on, only 2.X.X versions of Fast DDS will be supported.

• Got rid of separate CMake testing project; now, it is included in the same project as the System Handle, under
the test folder.

148 Chapter 6. Contact and commercial support

https://integration-service.docs.eprosima.com/en/latest/api_reference/api_reference.html
https://www.omg.org/spec/IDL/4.2/About-IDL
https://github.com/eProsima/Integration-Service/actions/workflows/ci.yml
https://github.com/eProsima/Integration-Service/tree/main/examples/basic
https://github.com/eProsima/Integration-Service/tree/main/examples/utils

Integration Service Documentation, Release 3.1.0

• Created a FastDDS-SH GitHub action automated task for unitary and integration tests.

• Added support for setting a custom DDS participant domain ID. This option can be set in the YAML specific
configuration section for the fastdds middleware.

• Added the possibility of creating the Fast DDS DomainParticipant entity with a custom XML profile.

• Added specific compilation flags.

• UDPv4 is now used as default transport if the user does not set a custom one.

• Treat services request and reply types properly, even if no remap if present.

• Fix concurrency problem detected in the client/server integration tests.

FIWARE System Handle

• Created a FIWARE-SH GitHub action automated task for unitary and integration tests.

• Added specific compilation flags.

ROS 1 System Handle

• Created a ROS1-SH GitHub action automated task for unitary and integration tests.

• Added specific compilation flags.

• Fixed SystemHandle::configure return value logic.

• Rearranged project folders with a more consistent structure.

• Created a new MIX generator project to ease users the task of compiling custom ROS 1 packages transformation
libraries.

• Fixed service server/client not taking into account request and reply types separately.

ROS 2 System Handle

• Created a ROS2-SH GitHub action automated task for unitary and integration tests.

• Added specific compilation flags.

• Rearranged project folders to a more consistent structure.

• Created a new MIX generator project to ease users the task of compiling custom ROS 2 packages transformation
libraries.

• Fixed service server/client not taking into account request and reply types separately.

WebSocket System Handle

• Created a WebSocket-SH GitHub action automated task for unitary and integration tests.

• Add specific compilation flags.

• Added support for TCP (non-secure) connections.

• Add the option in the YAML configuration file to disable security.

• Add tests for server/client interaction.

• Fixed concurrency problem when handling connections.

• Add specific traces with more information about the connection ID. Keep track of all the opened connections
and tag them with a unique ID.

6.22. Previous versions 149

https://github.com/eProsima/FastDDS-SH/actions/workflows/ci.yml
https://fast-dds.docs.eprosima.com/en/latest/fastdds/xml_configuration/xml_configuration.html
https://github.com/eProsima/FIWARE-SH/actions/workflows/ci.yml
https://github.com/eProsima/ROS1-SH/actions/workflows/ci.yml
https://github.com/eProsima/ROS2-SH/actions/workflows/ci.yml
https://github.com/eProsima/WebSocket-SH/actions/workflows/ci.yml

Integration Service Documentation, Release 3.1.0

6.22.2 v2.1.0

This release includes the following bugfixes and improvements:

ROS 2 System Handle

• Cross-compatibility with ROS 2 Eloquent and Foxy.

WebSocket System Handle

• Verify token with public key.

6.22.3 v2.0.0

This release includes the following bugfixes and improvements:

Core

• Fix segfault when converting integer types to/from the Core language to the specific protocol.

• JSON conversion library: fix vector-of-bool conversions.

• JSON conversion library: allow more flexibility in converting JSON values into strings.

• Support for ROS 1 boolean type being cast as uint8_t.

• Fix template substitution for string templates that have an ending substring.

• Support dispatch templates for topic names.

Fast DDS System Handle

• Added Fast DDS System Handle, with complete support for publication/subscription and services.

ROS 1 System Handle

• Avoid infinite waiting if a request do not reach the remote service.

• Fixed file separator trouble with topic names containing a /.

• Include the Core as a dependency of the genmsg package.

• Allow, via YAML configuration parameters, to specify custom names for ROS 1 nodes.

• Remove package.xml files, because they confuse colcon.

• Added latching and queue_size specific topic configuration parameters.

ROS 2 System Handle

• Avoid infinite waiting if a request do not reach the remote service.

• Fixed file separator trouble with topic names containing a /.

• Include the Core as a dependency of the rosidl package.

• Support for both ROS 2 Crystal and Dashing.

• Have CMake throw a fatal error when dependencies are missing.

• Corrected format.

• Support for ROS 2 domain change.

WebSocket System Handle

• Update WebSocket System Handle tests, so the TLS handshake works.

150 Chapter 6. Contact and commercial support

Integration Service Documentation, Release 3.1.0

• Have CMake throw a fatal error when dependencies are missing.

6.22.4 v1.0.0

Initial version:

• Developed basic Core structure and support for Middleware Interface Extension files.

• Developed initial version of ROS 1, ROS 2 and WebSocket System Handles with publisher/subscriber and
server/client support; and FIWARE System Handle, with publisher/subscriber support.

• Created custom dynamic type Message class for handling content exchange among System Handles.

• Created mock System Handle, for testing purposes.

• Support for basic types: ints, floats, strings. . .

6.22. Previous versions 151

Integration Service Documentation, Release 3.1.0

152 Chapter 6. Contact and commercial support

INDEX

C
CurrentLevelStatus (C++ class), 84

E
eprosima::is::core::FieldToString (C++

class), 61
eprosima::is::core::FieldToString::~FieldToString

(C++ function), 61
eprosima::is::core::FieldToString::details

(C++ function), 61
eprosima::is::core::FieldToString::FieldToString

(C++ function), 61
eprosima::is::core::FieldToString::to_string

(C++ function), 61
eprosima::is::core::Instance (C++ class),

57
eprosima::is::core::Instance::~Instance

(C++ function), 58
eprosima::is::core::Instance::Instance

(C++ function), 57
eprosima::is::core::Instance::run (C++

function), 58
eprosima::is::core::InstanceHandle (C++

class), 58
eprosima::is::core::InstanceHandle::~InstanceHandle

(C++ function), 59
eprosima::is::core::InstanceHandle::InstanceHandle

(C++ function), 59
eprosima::is::core::InstanceHandle::operator

bool (C++ function), 59
eprosima::is::core::InstanceHandle::quit

(C++ function), 59
eprosima::is::core::InstanceHandle::running

(C++ function), 59
eprosima::is::core::InstanceHandle::type_registry

(C++ function), 59
eprosima::is::core::InstanceHandle::wait

(C++ function), 59
eprosima::is::core::InstanceHandle::wait_for

(C++ function), 59
eprosima::is::core::internal::Config

(C++ class), 50

eprosima::is::core::internal::Config::check_service_compatibility
(C++ function), 54

eprosima::is::core::internal::Config::check_topic_compatibility
(C++ function), 53

eprosima::is::core::internal::Config::Config
(C++ function), 51

eprosima::is::core::internal::Config::configure_services
(C++ function), 53

eprosima::is::core::internal::Config::configure_topics
(C++ function), 52

eprosima::is::core::internal::Config::from_file
(C++ function), 55

eprosima::is::core::internal::Config::load_middlewares
(C++ function), 52

eprosima::is::core::internal::Config::okay
(C++ function), 52

eprosima::is::core::internal::Config::operator
bool (C++ function), 52

eprosima::is::core::internal::Config::parse
(C++ function), 51

eprosima::is::core::internal::Config::RequestCallbacks
(C++ type), 50

eprosima::is::core::internal::Config::resolve_type
(C++ function), 54

eprosima::is::core::internal::Config::SubscriptionCallbacks
(C++ type), 50

eprosima::is::core::internal::MiddlewareConfig
(C++ struct), 55

eprosima::is::core::internal::MiddlewareConfig::config_node
(C++ member), 55

eprosima::is::core::internal::MiddlewareConfig::type
(C++ member), 55

eprosima::is::core::internal::MiddlewareConfig::types_from
(C++ member), 55

eprosima::is::core::internal::ServiceConfig
(C++ struct), 56

eprosima::is::core::internal::ServiceConfig::middleware_configs
(C++ member), 57

eprosima::is::core::internal::ServiceConfig::remap
(C++ member), 57

eprosima::is::core::internal::ServiceConfig::reply_type
(C++ member), 57

153

Integration Service Documentation, Release 3.1.0

eprosima::is::core::internal::ServiceConfig::request_type
(C++ member), 57

eprosima::is::core::internal::ServiceConfig::route
(C++ member), 57

eprosima::is::core::internal::ServiceInfo
(C++ type), 56

eprosima::is::core::internal::ServiceRoute
(C++ struct), 55

eprosima::is::core::internal::ServiceRoute::all
(C++ function), 56

eprosima::is::core::internal::ServiceRoute::clients
(C++ member), 56

eprosima::is::core::internal::ServiceRoute::server
(C++ member), 56

eprosima::is::core::internal::TopicConfig
(C++ struct), 56

eprosima::is::core::internal::TopicConfig::message_type
(C++ member), 56

eprosima::is::core::internal::TopicConfig::middleware_configs
(C++ member), 56

eprosima::is::core::internal::TopicConfig::remap
(C++ member), 56

eprosima::is::core::internal::TopicConfig::route
(C++ member), 56

eprosima::is::core::internal::TopicInfo
(C++ struct), 56

eprosima::is::core::internal::TopicInfo::name
(C++ member), 56

eprosima::is::core::internal::TopicInfo::type
(C++ member), 56

eprosima::is::core::internal::TopicRoute
(C++ struct), 55

eprosima::is::core::internal::TopicRoute::all
(C++ function), 55

eprosima::is::core::internal::TopicRoute::from
(C++ member), 55

eprosima::is::core::internal::TopicRoute::to
(C++ member), 55

eprosima::is::core::InvalidTemplateFormat
(C++ class), 68

eprosima::is::core::InvalidTemplateFormat::~InvalidTemplateFormat
(C++ function), 69

eprosima::is::core::InvalidTemplateFormat::InvalidTemplateFormat
(C++ function), 69

eprosima::is::core::InvalidTemplateFormat::template_string
(C++ function), 69

eprosima::is::core::MiddlewareInterfaceExtension
(C++ class), 62

eprosima::is::core::MiddlewareInterfaceExtension::~MiddlewareInterfaceExtension
(C++ function), 63

eprosima::is::core::MiddlewareInterfaceExtension::from_file
(C++ function), 63

eprosima::is::core::MiddlewareInterfaceExtension::from_node
(C++ function), 63

eprosima::is::core::MiddlewareInterfaceExtension::from_string
(C++ function), 63

eprosima::is::core::MiddlewareInterfaceExtension::load
(C++ function), 63

eprosima::is::core::MiddlewareInterfaceExtension::MiddlewareInterfaceExtension
(C++ function), 62, 63

eprosima::is::core::MiddlewarePrefixPathMap
(C++ type), 58

eprosima::is::core::Mix (C++ type), 62
eprosima::is::core::RequiredTypes (C++

struct), 78
eprosima::is::core::RequiredTypes::messages

(C++ member), 78
eprosima::is::core::RequiredTypes::services

(C++ member), 78
eprosima::is::core::Search (C++ class), 63
eprosima::is::core::Search::~Search

(C++ function), 65
eprosima::is::core::Search::add_cli_is_prefix

(C++ function), 67
eprosima::is::core::Search::add_cli_middleware_prefix

(C++ function), 67
eprosima::is::core::Search::add_fallback_middleware_prefix

(C++ function), 65
eprosima::is::core::Search::add_priority_middleware_prefix

(C++ function), 65
eprosima::is::core::Search::find_file

(C++ function), 66
eprosima::is::core::Search::find_generic_mix

(C++ function), 65
eprosima::is::core::Search::find_message_mix

(C++ function), 65
eprosima::is::core::Search::find_middleware_mix

(C++ function), 66
eprosima::is::core::Search::find_service_mix

(C++ function), 65
eprosima::is::core::Search::ignore_is_prefixes

(C++ function), 67
eprosima::is::core::Search::ignore_middleware_prefixes

(C++ function), 67
eprosima::is::core::Search::ignore_system_prefixes

(C++ function), 67
eprosima::is::core::Search::operator=

(C++ function), 65
eprosima::is::core::Search::relative_to_config

(C++ function), 66
eprosima::is::core::Search::relative_to_home

(C++ function), 66
eprosima::is::core::Search::Search (C++

function), 64
eprosima::is::core::Search::set_config_file_directory

(C++ function), 67
eprosima::is::core::Search::to_env_format

(C++ function), 67

154 Index

Integration Service Documentation, Release 3.1.0

eprosima::is::core::StringTemplate (C++
class), 68

eprosima::is::core::StringTemplate::~StringTemplate
(C++ function), 68

eprosima::is::core::StringTemplate::compute_string
(C++ function), 68

eprosima::is::core::StringTemplate::StringTemplate
(C++ function), 68

eprosima::is::core::StringTemplate::usage_details
(C++ function), 68

eprosima::is::core::UnavailableMessageField
(C++ class), 69

eprosima::is::core::UnavailableMessageField::field_name
(C++ function), 69

eprosima::is::core::UnavailableMessageField::UnavailableMessageField
(C++ function), 69

eprosima::is::core::UnknownFieldToStringCast
(C++ class), 61

eprosima::is::core::UnknownFieldToStringCast::~UnknownFieldToStringCast
(C++ function), 62

eprosima::is::core::UnknownFieldToStringCast::field_name
(C++ function), 62

eprosima::is::core::UnknownFieldToStringCast::type
(C++ function), 62

eprosima::is::core::UnknownFieldToStringCast::UnknownFieldToStringCast
(C++ function), 62

eprosima::is::detail::register_system_handle_factory
(C++ function), 79

eprosima::is::detail::SystemHandleFactoryBuilder
(C++ type), 79

eprosima::is::detail::SystemHandleRegistrar
(C++ class), 79

eprosima::is::detail::SystemHandleRegistrar::SystemHandleRegistrar
(C++ function), 79

eprosima::is::FullSystem (C++ class), 78
eprosima::is::FullSystem::~FullSystem

(C++ function), 78
eprosima::is::FullSystem::FullSystem

(C++ function), 78
eprosima::is::internal::Register (C++

class), 69
eprosima::is::internal::Register::get

(C++ function), 70
eprosima::is::internal::Register::insert

(C++ function), 70
eprosima::is::internal::SystemHandleInfo

(C++ class), 70
eprosima::is::internal::SystemHandleInfo::~SystemHandleInfo

(C++ function), 70
eprosima::is::internal::SystemHandleInfo::handle

(C++ member), 71
eprosima::is::internal::SystemHandleInfo::operator

bool (C++ function), 70
eprosima::is::internal::SystemHandleInfo::SystemHandleInfo

(C++ function), 70
eprosima::is::internal::SystemHandleInfoMap

(C++ type), 70
eprosima::is::run_instance (C++ function),

59, 60
eprosima::is::ServiceClient (C++ class), 74
eprosima::is::ServiceClient::~ServiceClient

(C++ function), 75
eprosima::is::ServiceClient::receive_response

(C++ function), 75
eprosima::is::ServiceClient::ServiceClient

(C++ function), 75
eprosima::is::ServiceClientSystem (C++

class), 75
eprosima::is::ServiceClientSystem::~ServiceClientSystem

(C++ function), 75
eprosima::is::ServiceClientSystem::create_client_proxy

(C++ function), 75, 76
eprosima::is::ServiceClientSystem::RequestCallback

(C++ type), 75
eprosima::is::ServiceClientSystem::ServiceClientSystem

(C++ function), 75
eprosima::is::ServiceProvider (C++ class),

76
eprosima::is::ServiceProvider::~ServiceProvider

(C++ function), 76
eprosima::is::ServiceProvider::call_service

(C++ function), 76
eprosima::is::ServiceProvider::ServiceProvider

(C++ function), 76
eprosima::is::ServiceProviderSystem

(C++ class), 77
eprosima::is::ServiceProviderSystem::~ServiceProviderSystem

(C++ function), 77
eprosima::is::ServiceProviderSystem::create_service_proxy

(C++ function), 77
eprosima::is::ServiceProviderSystem::ServiceProviderSystem

(C++ function), 77
eprosima::is::ServiceSystem (C++ class), 77
eprosima::is::ServiceSystem::~ServiceSystem

(C++ function), 78
eprosima::is::ServiceSystem::ServiceSystem

(C++ function), 78
eprosima::is::sh::fastdds::Client (C++

class), 85
eprosima::is::sh::fastdds::Client::~Client

(C++ function), 85
eprosima::is::sh::fastdds::Client::add_config

(C++ function), 86
eprosima::is::sh::fastdds::Client::Client

(C++ function), 85
eprosima::is::sh::fastdds::Client::operator=

(C++ function), 85
eprosima::is::sh::fastdds::Client::receive_response

Index 155

Integration Service Documentation, Release 3.1.0

(C++ function), 86
eprosima::is::sh::fastdds::DDSMiddlewareException

(C++ class), 86
eprosima::is::sh::fastdds::DDSMiddlewareException::DDSMiddlewareException

(C++ function), 86
eprosima::is::sh::fastdds::Participant

(C++ class), 86
eprosima::is::sh::fastdds::Participant::~Participant

(C++ function), 87
eprosima::is::sh::fastdds::Participant::associate_topic_to_dds_entity

(C++ function), 88
eprosima::is::sh::fastdds::Participant::build_participant

(C++ function), 87
eprosima::is::sh::fastdds::Participant::create_dynamic_data

(C++ function), 88
eprosima::is::sh::fastdds::Participant::delete_dynamic_data

(C++ function), 88
eprosima::is::sh::fastdds::Participant::dissociate_topic_from_dds_entity

(C++ function), 88
eprosima::is::sh::fastdds::Participant::get_dds_participant

(C++ function), 87
eprosima::is::sh::fastdds::Participant::get_dynamic_type

(C++ function), 88
eprosima::is::sh::fastdds::Participant::get_topic_type

(C++ function), 88
eprosima::is::sh::fastdds::Participant::Participant

(C++ function), 87
eprosima::is::sh::fastdds::Participant::register_dynamic_type

(C++ function), 87
eprosima::is::sh::fastdds::Publisher

(C++ class), 89
eprosima::is::sh::fastdds::Publisher::~Publisher

(C++ function), 89
eprosima::is::sh::fastdds::Publisher::get_dds_instance_handle

(C++ function), 90
eprosima::is::sh::fastdds::Publisher::operator=

(C++ function), 89
eprosima::is::sh::fastdds::Publisher::publish

(C++ function), 89
eprosima::is::sh::fastdds::Publisher::Publisher

(C++ function), 89
eprosima::is::sh::fastdds::Publisher::topic_name

(C++ function), 89
eprosima::is::sh::fastdds::Server (C++

class), 90
eprosima::is::sh::fastdds::Server::~Server

(C++ function), 90
eprosima::is::sh::fastdds::Server::add_config

(C++ function), 91
eprosima::is::sh::fastdds::Server::call_service

(C++ function), 91
eprosima::is::sh::fastdds::Server::operator=

(C++ function), 91
eprosima::is::sh::fastdds::Server::Server

(C++ function), 90, 91
eprosima::is::sh::fastdds::Subscriber

(C++ class), 91
eprosima::is::sh::fastdds::Subscriber::~Subscriber

(C++ function), 91
eprosima::is::sh::fastdds::Subscriber::operator=

(C++ function), 92
eprosima::is::sh::fastdds::Subscriber::receive

(C++ function), 92
eprosima::is::sh::fastdds::Subscriber::Subscriber

(C++ function), 91, 92
eprosima::is::sh::ros1::Factory (C++

class), 92
eprosima::is::sh::ros1::Factory::create_client_proxy

(C++ function), 96
eprosima::is::sh::ros1::Factory::create_publisher

(C++ function), 95
eprosima::is::sh::ros1::Factory::create_server_proxy

(C++ function), 96
eprosima::is::sh::ros1::Factory::create_subscription

(C++ function), 95
eprosima::is::sh::ros1::Factory::create_type

(C++ function), 94
eprosima::is::sh::ros1::Factory::Implementation

(C++ class), 97
eprosima::is::sh::ros1::Factory::instance

(C++ function), 97
eprosima::is::sh::ros1::Factory::register_client_proxy_factory

(C++ function), 96
eprosima::is::sh::ros1::Factory::register_publisher_factory

(C++ function), 95
eprosima::is::sh::ros1::Factory::register_server_proxy_factory

(C++ function), 96
eprosima::is::sh::ros1::Factory::register_subscription_factory

(C++ function), 94
eprosima::is::sh::ros1::Factory::register_type_factory

(C++ function), 94
eprosima::is::sh::ros1::Factory::RegisterPublisherToFactory

(C++ type), 93
eprosima::is::sh::ros1::Factory::RegisterServiceClientToFactory

(C++ type), 93
eprosima::is::sh::ros1::Factory::RegisterServiceProviderToFactory

(C++ type), 94
eprosima::is::sh::ros1::Factory::RegisterSubscriptionToFactory

(C++ type), 93
eprosima::is::sh::ros1::Factory::RegisterTypeToFactory

(C++ type), 93
eprosima::is::sh::ros1::make_meta_publisher

(C++ function), 97
eprosima::is::sh::ros1::SystemHandle

(C++ class), 98
eprosima::is::sh::ros1::SystemHandle::~SystemHandle

(C++ function), 98
eprosima::is::sh::ros1::SystemHandle::advertise

156 Index

Integration Service Documentation, Release 3.1.0

(C++ function), 98
eprosima::is::sh::ros1::SystemHandle::configure

(C++ function), 98
eprosima::is::sh::ros1::SystemHandle::create_client_proxy

(C++ function), 98
eprosima::is::sh::ros1::SystemHandle::create_service_proxy

(C++ function), 98
eprosima::is::sh::ros1::SystemHandle::is_internal_message

(C++ function), 98
eprosima::is::sh::ros1::SystemHandle::okay

(C++ function), 98
eprosima::is::sh::ros1::SystemHandle::spin_once

(C++ function), 98
eprosima::is::sh::ros1::SystemHandle::subscribe

(C++ function), 98
eprosima::is::sh::ros1::SystemHandle::SystemHandle

(C++ function), 98
eprosima::is::sh::ros2::Factory (C++

class), 99
eprosima::is::sh::ros2::Factory::create_client_proxy

(C++ function), 102
eprosima::is::sh::ros2::Factory::create_publisher

(C++ function), 102
eprosima::is::sh::ros2::Factory::create_server_proxy

(C++ function), 103
eprosima::is::sh::ros2::Factory::create_subscription

(C++ function), 101
eprosima::is::sh::ros2::Factory::create_type

(C++ function), 101
eprosima::is::sh::ros2::Factory::Implementation

(C++ class), 103
eprosima::is::sh::ros2::Factory::instance

(C++ function), 103
eprosima::is::sh::ros2::Factory::register_client_proxy_factory

(C++ function), 102
eprosima::is::sh::ros2::Factory::register_publisher_factory

(C++ function), 102
eprosima::is::sh::ros2::Factory::register_server_proxy_factory

(C++ function), 103
eprosima::is::sh::ros2::Factory::register_subscription_factory

(C++ function), 101
eprosima::is::sh::ros2::Factory::register_type_factory

(C++ function), 101
eprosima::is::sh::ros2::Factory::RegisterPublisherToFactory

(C++ type), 100
eprosima::is::sh::ros2::Factory::RegisterServiceClientToFactory

(C++ type), 100
eprosima::is::sh::ros2::Factory::RegisterServiceProviderToFactory

(C++ type), 100
eprosima::is::sh::ros2::Factory::RegisterSubscriptionToFactory

(C++ type), 99
eprosima::is::sh::ros2::Factory::RegisterTypeToFactory

(C++ type), 99
eprosima::is::sh::ros2::make_meta_publisher

(C++ function), 104
eprosima::is::sh::ros2::SystemHandle

(C++ class), 104
eprosima::is::sh::ros2::SystemHandle::~SystemHandle

(C++ function), 105
eprosima::is::sh::ros2::SystemHandle::advertise

(C++ function), 105
eprosima::is::sh::ros2::SystemHandle::configure

(C++ function), 105
eprosima::is::sh::ros2::SystemHandle::create_client_proxy

(C++ function), 105
eprosima::is::sh::ros2::SystemHandle::create_service_proxy

(C++ function), 105
eprosima::is::sh::ros2::SystemHandle::is_internal_message

(C++ function), 105
eprosima::is::sh::ros2::SystemHandle::okay

(C++ function), 105
eprosima::is::sh::ros2::SystemHandle::spin_once

(C++ function), 105
eprosima::is::sh::ros2::SystemHandle::subscribe

(C++ function), 105
eprosima::is::sh::ros2::SystemHandle::SystemHandle

(C++ function), 105
eprosima::is::sh::websocket::Client

(C++ class), 113
eprosima::is::sh::websocket::Encoding

(C++ class), 106
eprosima::is::sh::websocket::Encoding::add_type

(C++ function), 108
eprosima::is::sh::websocket::Encoding::encode_advertise_msg

(C++ function), 107
eprosima::is::sh::websocket::Encoding::encode_advertise_service_msg

(C++ function), 108
eprosima::is::sh::websocket::Encoding::encode_call_service_msg

(C++ function), 107
eprosima::is::sh::websocket::Encoding::encode_publication_msg

(C++ function), 106
eprosima::is::sh::websocket::Encoding::encode_service_response_msg

(C++ function), 106
eprosima::is::sh::websocket::Encoding::encode_subscribe_msg

(C++ function), 107
eprosima::is::sh::websocket::Encoding::interpret_websocket_msg

(C++ function), 106
eprosima::is::sh::websocket::Endpoint

(C++ class), 108
eprosima::is::sh::websocket::Endpoint::~Endpoint

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::advertise

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::call_service

(C++ function), 110
eprosima::is::sh::websocket::Endpoint::configure

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::create_client_proxy

Index 157

Integration Service Documentation, Release 3.1.0

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::create_service_proxy

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::Endpoint

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::is_internal_message

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::okay

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::publish

(C++ function), 110
eprosima::is::sh::websocket::Endpoint::receive_publication_ws

(C++ function), 111
eprosima::is::sh::websocket::Endpoint::receive_response

(C++ function), 110
eprosima::is::sh::websocket::Endpoint::receive_service_advertisement_ws

(C++ function), 112
eprosima::is::sh::websocket::Endpoint::receive_service_request_ws

(C++ function), 112
eprosima::is::sh::websocket::Endpoint::receive_service_response_ws

(C++ function), 112
eprosima::is::sh::websocket::Endpoint::receive_service_unadvertisement_ws

(C++ function), 112
eprosima::is::sh::websocket::Endpoint::receive_subscribe_request_ws

(C++ function), 111
eprosima::is::sh::websocket::Endpoint::receive_topic_advertisement_ws

(C++ function), 111
eprosima::is::sh::websocket::Endpoint::receive_topic_unadvertisement_ws

(C++ function), 111
eprosima::is::sh::websocket::Endpoint::receive_unsubscribe_request_ws

(C++ function), 111
eprosima::is::sh::websocket::Endpoint::runtime_advertisement

(C++ function), 110
eprosima::is::sh::websocket::Endpoint::spin_once

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::startup_advertisement

(C++ function), 109
eprosima::is::sh::websocket::Endpoint::subscribe

(C++ function), 109
eprosima::is::sh::websocket::JwtValidator

(C++ class), 113
eprosima::is::sh::websocket::JwtValidator::add_verification_policy

(C++ function), 113
eprosima::is::sh::websocket::JwtValidator::verify

(C++ function), 113
eprosima::is::sh::websocket::Server

(C++ class), 113
eprosima::is::sh::websocket::ServerConfig

(C++ class), 114
eprosima::is::sh::websocket::VerificationPolicy

(C++ class), 113
eprosima::is::sh::websocket::VerificationPolicy::Rule

(C++ type), 114
eprosima::is::sh::websocket::VerificationPolicy::secret_or_pubkey

(C++ function), 114
eprosima::is::sh::websocket::VerificationPolicy::VerificationPolicy

(C++ function), 114
eprosima::is::SystemHandle (C++ class), 71
eprosima::is::SystemHandle::~SystemHandle

(C++ function), 71
eprosima::is::SystemHandle::configure

(C++ function), 71
eprosima::is::SystemHandle::okay (C++

function), 72
eprosima::is::SystemHandle::operator

bool (C++ function), 72
eprosima::is::SystemHandle::operator=

(C++ function), 71
eprosima::is::SystemHandle::spin_once

(C++ function), 72
eprosima::is::SystemHandle::SystemHandle

(C++ function), 71
eprosima::is::TopicPublisher (C++ class),

73
eprosima::is::TopicPublisher::~TopicPublisher

(C++ function), 73
eprosima::is::TopicPublisher::publish

(C++ function), 73
eprosima::is::TopicPublisher::TopicPublisher

(C++ function), 73
eprosima::is::TopicPublisherSystem (C++

class), 73
eprosima::is::TopicPublisherSystem::~TopicPublisherSystem

(C++ function), 74
eprosima::is::TopicPublisherSystem::advertise

(C++ function), 74
eprosima::is::TopicPublisherSystem::TopicPublisherSystem

(C++ function), 74
eprosima::is::TopicSubscriberSystem

(C++ class), 72
eprosima::is::TopicSubscriberSystem::~TopicSubscriberSystem

(C++ function), 72
eprosima::is::TopicSubscriberSystem::is_internal_message

(C++ function), 73
eprosima::is::TopicSubscriberSystem::subscribe

(C++ function), 72
eprosima::is::TopicSubscriberSystem::SubscriptionCallback

(C++ type), 72
eprosima::is::TopicSubscriberSystem::TopicSubscriberSystem

(C++ function), 72
eprosima::is::TopicSystem (C++ class), 74
eprosima::is::TopicSystem::~TopicSystem

(C++ function), 74
eprosima::is::TopicSystem::TopicSystem

(C++ function), 74
eprosima::is::TypeRegistry (C++ type), 78
eprosima::is::utils::CharConvert (C++

struct), 80

158 Index

Integration Service Documentation, Release 3.1.0

eprosima::is::utils::CharConvert::from_xtype_field
(C++ function), 81

eprosima::is::utils::CharConvert::native_type
(C++ type), 80

eprosima::is::utils::CharConvert::to_xtype_field
(C++ function), 81

eprosima::is::utils::Convert (C++ struct),
79

eprosima::is::utils::Convert::from_xtype_field
(C++ function), 80

eprosima::is::utils::Convert::native_type
(C++ type), 80

eprosima::is::utils::Convert::to_xtype_field
(C++ function), 80

eprosima::is::utils::Convert::type_is_primitive
(C++ member), 80

eprosima::is::utils::Logger (C++ class), 83
eprosima::is::utils::Logger::~Logger

(C++ function), 83
eprosima::is::utils::Logger::get_level

(C++ function), 83
eprosima::is::utils::Logger::Logger

(C++ function), 83
eprosima::is::utils::Logger::operator<<

(C++ function), 83, 84
eprosima::is::utils::NonResizableContainerConvert

(C++ struct), 82
eprosima::is::utils::NonResizableContainerConvert::from_xtype_field

(C++ function), 83
eprosima::is::utils::NonResizableContainerConvert::to_xtype_field

(C++ function), 83
eprosima::is::utils::ResizableBoundedContainerConvert

(C++ struct), 81
eprosima::is::utils::ResizableBoundedContainerConvert::from_xtype_field

(C++ function), 82
eprosima::is::utils::ResizableBoundedContainerConvert::to_xtype_field

(C++ function), 82
eprosima::is::utils::ResizableUnboundedContainerConvert

(C++ struct), 81
eprosima::is::utils::ResizableUnboundedContainerConvert::from_xtype

(C++ function), 81
eprosima::is::utils::ResizableUnboundedContainerConvert::from_xtype_field

(C++ function), 81
eprosima::is::utils::ResizableUnboundedContainerConvert::to_xtype_field

(C++ function), 81

I
IS_REGISTER_SYSTEM (C macro), 78

L
Level (C++ class), 84

Index 159

	System Handles
	YAML configuration files
	Main features
	Typical use-cases
	Structure of the documentation
	Contact and commercial support
	Integration Service Core
	System Handles
	YAML configuration files
	Main features
	Typical use-cases
	Structure of the documentation
	Contact and commercial support
	Dependencies
	Installation
	Integration Service Core
	System Handle
	YAML Configuration
	Integration Service Core
	Fast DDS System Handle
	ROS 1 System Handle
	ROS 2 System Handle
	WebSocket System Handle
	Different Protocols
	Same Protocol
	WAN Communication
	Latest version
	Previous versions

	Index

